THALASSEMIA

Sujit Sheth, M.D. Pediatric Hematology Oncology

Disclosures

- Consultant
 - Bluebird bio
 - Celgene Bristol Myers Squibb Acceleron
 - Agios
 - Chiesi
- Steering
 - CRISPR/ Vertex CTX001
- Will discuss therapeutics not yet FDA approved – results from clinical trials

HEMOGLOBIN DISORDERS

Qualitative Hemoglobinopathies

Globin gene mutations that result in structural abnormalities of the globin chain:

Hb S, Hb C, Hb E and other Hb variants

Quantitative Hemoglobinopathies (disorders of ineffective erythropoiesis) Globin gene mutations that result in decreased production of globin chains:

Thalassemias (Alpha, Beta, Gamma, Delta)

THE THALASSEMIA SYNDROMES

ALPHA:Decreased or Absent α globin chainsBETA:Decreased or Absent β globin chainsDELTA:Decreased or Absent δ globin chainsGAMMA:Decreased or Absent γ globin chains

STRUCTURAL VARIANTS:
Hb Constant Spring (α)Hb E ($\beta^{26Glu-Lys}$)Hb Hasharon (α)Hb Lepore ($\delta\beta$ fusion)

Adams and Steinberg. *Prog Clin Biol Res.* 1981;55:81. Clarke and Higgins. *Clin Chem.* 2000;46:1284.

DISTRIBUTION

80-90 million carriers worldwide
(~ 1.5% of population)^[1]
60,000 affected individuals born annually^[1]

Exact prevalence in US unknown; estimated to be ~ 2000 individuals^[2]

Estimated prevalence in Italy: ~ 6000^[3]

High prevalence in Asia—South and Southeast Asia, China^[1]

Immigration patterns

GENOTYPE-PHENOTYPE

Mild	Non Transfusion dependent	Transfusion dependent			
Anemia ranging from very mild to low end of normal	Intermediate severity Moderate anemia	Severe anemia			
α-thalassemia trait/silent carrier	α-thalassemia intermedia-Hb H	α-thalassemia major/Hb Barts			
β-thalassemia minor/trait	β-thalassemia intermedia	β-thalassemia major Severe Hb E β-thalassemia			
	Dominant β-thalassemia				
	Hb H Constant Spring	Severe Hb H Constant Spring			
	Hemoglobin E β-thalassemia				

β THALASSEMIA

MUTATIONS

- β^0 nonsense, frameshift or splicing
- β⁺ promoter area CACCC or TATA box, polyadenylation signal, 5' or 3' UTR, or splicing defects
- Complex $\delta\beta$ or $\gamma\delta\beta$ thalassemias deletions of part of β globin gene cluster
- Deletion of LCR with intact β globin gene
- Silent distal CACCC box, 5' unbalanced region, polyadenylation signal, some splicing defects

NORMAL ERYTHROPOIESIS

- Characterized by proliferation of progenitor cells
- Promoted by EPO

- Characterized by differentiation of erythroblasts, maturation of reticulocyte precursors into RBCs
- Regulated by TGF-β ligands

HEMOGLOBIN ABNORMALITY

- Imbalance between normal ratio of $\alpha:\beta$ chain production
- Insufficient upregulation of complementary genes
- Precipitation of tetramers, formation of hemichromes
- Cell disruption apoptosis
- Ineffective erythropoiesis

INEFFECTIVE ERYTHROPOIESIS

- Characterized by expansion of early erythroid precursors
- Characterized by accelerated differentiation, maturation arrest in polychromatic erythroblast stage, and apoptosis
- Accumulation of TGF-β ligands

FEATURES OF INEFFECTIVE ERYTHROPOIESIS

Apoptosis \rightarrow Ineffective erythropoiesis

- Impaired erythroid precursor maturation
- α and β chain imbalance
- Formation of toxic hemichromes from precipitation of unpaired α-globin chains
- Apoptosis of erythroid precursors
- Reduced RBC survival
- Anemia
- Increased erythropoietic drive
- Extramedullary hematopoiesis
- Dysregulated iron metabolism

CLINICAL PHENOTYPES IN BETA THALASSEMIA HETEROZYGOUS

Silent carrier ¹	Carrier with normal phenotype:		
Trait	Normal CBC, retic, electrophoresis		
	Requires DNA testing for detection of mutations		
	Genotypes: β ⁺ /β		
Minor ¹	Carrier of the classic trait		
Trait	Slight anemia at worst with low MCV		

Quantitative Electrophoresis: Elevated A2, elevated F

Genotypes: β^+/β or β^0/β

1. Xu et al. J Clin Pathol. 2004;57:517

CLINICAL PHENOTYPES IN BETA THALASSEMIA HOMOZYGOUS OR COMPOUND HETEROZYGOUS

- Intermedia ¹ Inherits two Thalassemia mutations Diagnosis usually at 2-5 years of age Moderate anemia; Hb >7-10 g/dL
 - Elevated Ret, ct: 2-10%; NRBCs on smear
 - Hepatosplenomegaly, Extramedullary Hematopoietic Masses
 - Minimal or periodic transfusions
 - Daily Folic Acid supplementation: 1 mg daily
 - May benefit from splenectomy
 - Genotypes: $\beta + /\beta +$, $\beta + /\beta^{\circ}$, $\beta^{\circ}/\beta^{\circ}$, $\beta^{E}/\beta +$, β^{E}/β° , $\beta + /\alpha\alpha\alpha\alpha$, $\beta^{\circ}/\alpha\alpha\alpha\alpha$
 - Major ^{1, 2}
 Inherits two Thalassemia mutations
 Diagnosis in first year
 Severe anemia; Hb <7 g/dL
 Ret. Ct: 10-15%; many NRBCs on smear
 Lifelong transfusions
 Genotypes: β°/β°, β+/β+, β^E/β°, β^E/β+
 - 1. Camaschella and Cappellini. Haematologica. 1995;80:58;
 - 2. 2. Weatherall et al. Ciba Found Symp. 1979;66:147.

SPECTRUM OF DISEASE

Syndrome	Genotype	Hematology	Disease Severity
Thalassemia major	βº/βº	 Complete absence of Hb A Severe anemia requiring transfusions from infancy 	TDLifelong supportive care required
Thalassemia intermedia	β+/β+ or β ⁰ /β+	 Diminished production of Hb A Mild to moderate anemia 	 NTD May need occasional transfusions or may become TD Significant variability in disease severity
Thalassemia minor	β⁺/β or β⁰/β	 Mild or no anemia 	NTDMay be asymptomatic

DIAGNOSIS

- History family history, ethnicity
- Clinical syndrome anemia, hepatosplenomegaly, facies, skeletal abnormalities
- CBC anemia with low MCV, low MCH, smear
- Hemoglobin electrophoresis
- Genetic testing

THE BLOOD SMEAR

Major

Minor

PATHOLOGY AND CLINICAL FEATURES

CLINICAL MANIFESTATIONS

- Anemia: Impaired function, impaired growth, impaired QoL
- Iron overload: Increased GI absorption, transfused iron
- Cardiac disease: Anemia, iron deposition
- Endocrinopathy: Pituitary, thyroid, endocrine pancreas, gonads
- **Bone disease:** Erythroid hyperplasia, endocrinopathy
- Gallbladder disease: Increased red cell turnover
- Extramedullary hematopoiesis: Hepatosplenomegaly, spinal nodules
- Vascular disease: Leg ulcers, pulmonary hypertension, stroke

COURSE - TDT

- Regular blood transfusions: Every 2-4 wks
- Splenectomy as needed
- Iron chelation therapy: Oral vs parenteral
- Monitoring for iron overload: MRI (annually)
- Monitoring for side effects of chelation (monthly)
- Monitoring for complications of disease and treatments (annually or more frequently if present)
- Hematopoietic stem cell transplantation

COURSE - NTDT

- Supportive care: Bone health, vitamin D and folic acid supplementation, thromboprophylaxis
- Splenectomy: If severe anemia and splenomegaly
- Transfusions (periodic): Leg ulcers, splenomegaly, pregnancy, surgery
- Iron chelation
- Induction of Hb F: Hydroxyurea, 5'azacytidine, decitabine, butyrate
- Other: Luspatercept, ruxolitinib
- Stem cell transplantation, gene therapy

MANAGEMENT ISSUES

- Transfusions, splenectomy
- Transfusion complications
- Complications of Iron overload
- Chelation Side effects and monitoring
- Organ dysfunction
- Stem cell transplantation
- Newer therapies

TRANSFUSION GOALS

- Correction of anemia Hgb > 10 gm/dl
- Suppression of (ineffective) erythropoiesis
- Prevention of bony changes, hepatosplenomegaly
- Inhibition of GI iron absorption
- Minimization of transfusional iron overload
 - Splenectomy
 - 15 mL/kg monthly approx. 0.3 0.6 mg/kg/day Fe
 - Short transfusion intervals q 2 wks

TRANSFUSION COMPLICATIONS

- Complications related to transfusions
 - Alloimmunization
 - Infections
 - Iron overload
- Complications related to iron overload
 - Cardiac failure
 - Liver cirrhosis/fibrosis/cancer
 - Diabetes mellitus
 - Infertility
 - Arthritis

SPLENECTOMY

• TDT

 Hypersplenism with increasing transfusion requirement - >200 ml/kg/year PRBCs

• NTDT

- Massive splenomegaly
- Hypersplenism extramedullary hematopoiesis
- Risks infection, vascular disease
- Benefits minimize transfusions and iron loading

COMPLICATIONS

Musallam. Acta Haematol. 2013;130:64. Musallam. Haematologica. 2013;98:833.

TRANSFUSIONAL IRON OVERLOAD: 16 Units PRBC

TRANSFUSIONAL IRON OVERLOAD: 100 Units PRBC

IRON LOADING

RISK OF ORGAN DAMAGE

- Liver all patients load the liver
 - Fibrosis, cirrhosis, risk of hepatocellular carcinoma
 - Hepatitis C independent risk factor
- Heart patients with inappropriately low hepcidin
 - Contractile dysfunction diastolic
 - Electrophysiologic dysfunction
- Endocrine patients with inappropriately low hepcidin
 - Pituitary dysfunction
 - Diabetes
 - Gonadal dysfunction
 - Osteopenia

MEASURING IRON BURDEN

- Serum Ferritin
- Liver Biopsy LIC
- SQUID LIC
- MRI LIC R2/R2*
- MRI Cardiac T2*

SERUM FERRITIN

Taher et al., Br J Haematol 2015

MRI - IRON QUANTIFICATION

- Utility
 - Non-invasive
 - No irradiation
 - Easily accessed
- Caveats
 - Technique variability
 - Sensitivity
 - Not correlated between tissues

CARDIAC T2* - PROGNOSTIC VALUE (Thalassemia Major)

Kirk P et al. Circulation 2009.

CHELATION

- Which Chelator
 - Iron binding
 - Route of administration
 - Efficacy
 - Toxicity
- When to start
- Monitoring
- COMPLIANCE

DEFERASIROX (Exjade[®], Jadenu[®])

DEFERIPRONE (Ferriprox[®])

DEFEROXAMINE (Desferal[®])

- Longest used approved effective iron chelator
- Challenges
 - Subcutaneous slow infusion 5 to 7 nights/week
 - Infusion-site reactions and pain
 - High degree of noncompliance

Wood JC et al. Blood 2008

 Survival correlated with compliance in thalassemia

DEFERIPRONE (Ferriprox®)

- FDA approved November 2011
 - Second line and combination use
 - Less effective than deferoxamine in reducing LIC
 - More effective in removing cardiac iron
- Side effects
 - Nausea, vomiting, abdominal pain
 - Arthralgia
 - Neurologic syndrome
 - Reports of increased risk of liver fibrosis
 - Neutropenia/Agranulocytosis
 Weekly neutrophil count recommended

DEFERASIROX (Exjade[®], Jadenu[®])

- FDA approved November 2005, 2015
 - Orally effective
 - Once a day only
 - Wide therapeutic index, dose range
- Side effects
 - Nausea, vomiting, abdominal pain
 - Liver and kidney toxicity
 - Rare reports of Neutropenia/Agranulocytosis
- Good long term safety and efficacy data
- Can be used in Combination therapy
- Demonstrated efficacy in cardiac iron removal

MONITORING IRON OVERLOAD

Level of Iron Overload	Iron Overload Measurements	Frequency of MRI Testing
Target	 LIC 2-5 mg/g DW Ferritin <1,000 ng/mL T2*>20 msecs 	 Check LIC when chelation is first initiated and every year thereafter Check cardiac T2* at age 10 and every 2 years thereafter
Moderately Elevated	 LIC 5-10 mg/g DW Ferritin 1,000 to 2,500 ng/mL T2*>20 msecs 	 Check LIC when chelation is first initiated and every year thereafter Check cardiac T2* at age 10 and every 1-2 years thereafter based on LIC trends
Seriously elevated	 LIC >10 mg/g DW Ferritin >2,500 ng/mL T2*<20 msecs 	 Check LIC when chelation is first initiated and every 6 months thereafter, if on intensive chelation Check cardiac T2* at age 10 and every year thereafter based on LIC trends
Mild cardiac iron overload with normal cardiac function	 T2* 10-20 msecs 	 Check LIC and cardiac T2* when chelation is first initiated and every 6-12 months thereafter while on intensive chelation. Monitor cardiac function (MRI/ECHO) every 6 months
Severe cardiac iron overload with or without cardiac dysfunction	 T2* <10 msecs 	 Check LIC and Cardiac T2*when chelation is first initiated and every 6 months thereafter on intensive chelation. Monitor cardiac function (MRI/ECHO) every 6 months with cardiac specialist

SURVIVAL IN THALASSEMIA MAJOR WITH EFFECTIVE OR INEFFECTIVE CHELATION

Brittenham et al, New Engl J Med 1994;331:567-573

STEM CELL TRANSPLANTATION

- Only currently available curative option
- Pretransplant organ function and iron status important; younger patients do better
- Excellent outcomes with matched sibling donors (including umbilical cord blood): 85% to 95% TFS
 - Matched unrelated donors: 68% to 80% TFS
- Nonmyeloablative regimens in clinical trials
- Alternative donor sources in clinical trials
 - Unrelated PBSC, UCB
 - Haploidentical donors

Li. Blood Adv. 2019;3:2562. Baronciani. ASH 2018. Abstr 168. Mohamed. Hematol Oncol Stem Cell Ther. 2017;10:290.

QUALITY OF LIFE

- Issues related to:
 - Symptoms fatigue
 - Physical appearance (NTDT)
 - Frequent visits to the hospital
 - Need for chelation compliance
 - Pain Bone disease, extramedullary hematopoiesis (NTDT)
 - Endocrine growth, development, fertility
 - Financial issues
- Psychosocial issues
 - Chronic illness
 - Reduced life expectancy with complications

SURVIVAL

β-Thalassemia Major Survival by Birth Cohort*

- Without treatment
 - $-\beta^0/\beta^0$: Die in first 2-5 yrs
 - Non- β^0/β^0 : Variable clinical spectrum with complications
- β^0/β^0 and non- β^0/β^0 with treatment
 - Improving survival
 - Significant morbidity but with decreasing incidence
 - Deaths related to complications

*Kaplan-Meier analysis included 977 patients who survived beyond first decade of life.

IMPROVED CARE

- Improved safety of blood supply
- Reduced incidence of alloimmunization
- Oral iron chelation
- Improved monitoring of iron overload to enable individualized tailoring of treatment regimen
- Improved treatment for hepatitis
- Improved outcomes for stem cell transplantation

UNMET NEEDS

- Curative options for those without matched sibling donors
- Means of ameliorating ineffective erythropoiesis
 - This could reduce/eliminate transfusion requirement
 - In turn, reducing iron loading
 - » From gut absorption
 - » From transfusions
- Prevent iron overload and its complications
- Reduce bone disease
- Improve quality of life

NOVEL THERAPIES

NOVEL THERAPIES

- Targeted therapies
 - -Activin traps
 - -Ruxolitinib
 - -Hepcidin manipulation
 - -Mitapivat
- Gene therapy
 - -Gene insertion
 - -Gene editing

LUSPATERCEPT

- Recombinant fusion protein containing a modified extracellular domain of ActRIIB^[1]
- Binds to GDF11 and other TGF-β superfamily ligands, inhibits Smad2/3 signaling, and promotes RBC differentiation/maturation^[1]
- Early data
 - Animal studies^[1]
 - Phase I study of healthy human volunteers^[2]
 - Phase II clinical trial in patients with β-thalassemia showed improved Hb levels (NTDT) and RBC transfusion burden (TDT) with luspatercept^[3]

LUSPATERCEPT

Normal

BELIEVE: ENDPOINTS

Secondary Endpoints

Cappellini. ASH 2018. Abstr 163.

BELIEVE: CONCLUSIONS

- BELIEVE met its primary endpoint, demonstrating statistically significant improvement, with a ≥ 33% reduction in RBC transfusion burden with luspatercept vs placebo
- Key secondary endpoints showed statistically significant improvement with luspatercept vs PBO, including ≥ 33% and ≥ 50% RBC transfusion burden reduction
- Luspatercept demonstrated a statistically significant, clinically meaningful reduction in RBC transfusion burden vs placebo during any 12-wk or 24-wk interval of the study period
- Luspatercept was generally well tolerated

Mitapivat – Mechanism in thalassemia

Results

Primary endpoint was met in 92.3% of patients

Endpoint	Genotype	n/N	%	90% CI				Mean (SD) change
Hb responders during Weeks 4–12 (completed 12 weeks)	All	12/13	92.3	68.4, 99.6	Patient population	Ν	Weeks	from baseline Hb, g/dL
	α	4/4	100	47.3, 100	All patients	13	4–12	1.34 (0.7)
	β	8/9	88.9	57.1, 99.4	α-thalassemia	4	4–12	1.17 (0.4)
Hb responders during Weeks 12–24 (completed 24 weeks)	βª	8/9	88.9	57.1, 99.4	β-thalassemia	9	4–24	1.43 (0.8)
Sustained responders: primary response and ≥ 2 Hb responses during Weeks 12–24	βª	7/8	87.5	52.9, 99.4				

Median (range) time to Hb increase of ≥ 1 g/dL among responders was 3.1 (1.4–7.1) weeks

Results – Increased Hb, decreased hemolysis

TARGETING THE HEPCIDIN PATHWAY

- In thalassemia, IE results in low levels of hepcidin leading to increased iron absorption, iron redistribution to organs
- Hepcidin mimetics function to:
 - Improve IE
 - Reduce iron absorption
 - Reduce iron to organs
- Trials of hepcidin mimetics
 - Trial of LJPC-401 did not meet endpoint
 - TRANSCEND trial of PTG-300 for TD or TDT and chronic anemia ongoing

- TMPRSS6 is another potential target to decrease iron overload, improve RBC survival by increasing hepcidin levels
 - Inhibition of TMPRSS6 ameliorated iron overload and IE in a mouse model of βthalassemia

GENE THERAPY APPROACHES

- Globin gene addition
 - Functional β-globin gene
 - Functional γ-globin gene
- Gene editing
 - Reverse fetal hemoglobin repression
 - » BCL11A
 - Correct the β -globin mutation

GENE THERAPY

Rivella. Haematologica. 2015;100:418.

GENE THERAPY – CURRENT TRIALS

- Gene addition
 - LentiGlobin BB305
 - » Northstar trials
 - Early studies: HGB-204 and HGB-205^[1]
 - More recent phase III studies: HGB-207 and HGB-212^[2,3]
 - GLOBE lentiviral vector
 - » Phase I/II trial^[4]

- Gene editing
 - Phase I/II Thales study of ST-400^[5]
 - Phase I/II study of CRISPR/CAS9 geneediting therapy CTX001^[6]

^{1.} Thompson. NEJM. 2018;378:1479. 2. Locatelli. EHA 2019. Abstr S1632. 3. Kulozik. EHA 2019. Abstr S140. 4. Marktel. Nat Med. 2019;25:234. 5. NCT03432364. 6. NCT03655678.

HGB-204/205: Early Studies of LentiGlobin BB305

HGB-207/212: Phase III Trials of LentiGlobin BB305

^{1.} Thompson. ASH 2019. Abstr 3543. 2. Lal. ASH 2019. Abstr 815.

Gene Therapy in Pediatric Patients (Subgroup Analysis of 2 Phase 3 Studies)

- Safety (N = 24)
 - AEs considered related or possibly related to the drug product
 - » Day of infusion: tachycardia and abdominal (one each, both grade 1)
 - » Post-infusion: 1 non-serious grade 3 event of thrombocytopenia
 - Veno-occlusive liver disease occurred in 3 patients (2 serious grade 4 and 1 grade 2); all events resolved with defibrotide
 - No vector-derived replication competent lentivirus
 - Efficacy (N = 15)
 - 87% of evaluable pediatric patients achieved TI
 - Ineffective erythropoiesis improved after beti-cel gene therapy

100% of patients between 12 and 18 years achieved TI

GENE THERAPY: SAFETY

- No deaths to date
- Most toxicities associated with myeloablative conditioning including stomatitis, febrile neutropenia, thrombocytopenia, bleeding, elevated LFTs, hypotension, sepsis, transfusion reactions, lower respiratory infection
- Venoocclusive disease seen in initial cohort (all treated successfully)
 - Now all subjects prophylaxed, reduced incidence in subsequent trials

FACTORS AFFECTING SUCCESS GENE ADDITION

- Transduction efficiency
 - But does increasing VCN increase risk of insertional mutagenesis?
- Transgene expression levels
 - Improved β-globin expression per copy
- Genotype: β^+ vs β^0

- Quality of HSC
 - Mobilized vs bone marrow harvest
 - Pediatric vs adult
- Bone marrow
 microenvironment
 - Hypertransfusion
 - Myeloablation

GENE EDITING

- Targets
 - Disruption of BCL11A using zinc finger nuclease or CRISPR/Cas9
 - Editing β-globin locus using CRISPR/CAS9
- Delivery of edited gene
 - HSC mobilization and myeloablation
 - Nonviral delivery
 - » Reduce risk of insertional mutagenesis
 - » Risk of off-target editing
- Phase I clinical trials underway

Results: TDT

B: Baseline, Hb: hemoglobin; HbA: adult hemoglobin; HbF: fetal hemoglobin; TDT: transfusion-dependent β-thalassemia. *Total Hb from local laboratory and Hb fraction from central laboratory. *IVS-I-110 phenotype is severe and similar to β⁰ / β⁰ Hb adducts and other variants

Results: TDT – transfusion free

^aIVS-I-110 phenotype is severe and similar to β^0 / β^0 .

Hb: hemoglobin; pRBC: packed red blood cell; RBC: red blood cell; TDT: transfusion-dependent β-thalassemia.

GENE THERAPY: CONCLUSIONS

- β-globin gene addition trials have achieved transfusion independence in patients with β-thalassemia, especially with less severe genotypes
 - AEs typical of myeloablative conditioning observed; well tolerated in pediatric and adult patients
 - Long-term data lacking (especially with high VCN)
 - Some patients have poor response
- Gene editing targeting *BCL11A* to raise fetal hemoglobin levels
 in

early clinical trials

 Expensive treatment; availability to patients needs to be addressed

OVERALL SUMMARY

- β-thalassemia is a chronic condition with significant morbidity and impact on QoL
- Monitoring and treating iron overload has significantly improved
- HSCT outcomes are better
- Targeted therapies have great potential to alter natural history of the disease and improve QoL for patients
- Gene therapy is on the horizon