Laboratory Tests of Hemostasis

Ellinor I. Peerschke, Ph.D. Chief, Hematology and Coagulation Laboratory Services Vice Chair, Department of Laboratory Medicine Memorial Sloan Kettering Cancer Center Gerald Soff, M.D. Hematology Service Memorial Sloan Kettering Cancer Center

The Benign Hematology Curriculum

09/03/2020

Disclosures

Ellinor I. Peerschke, Ph.D.

- Research Support:
 - None
- > Advisory Boards
 - None

Gerald A Soff MD

- Research Support:
 - > Amgen
 - Janssen Scientific Affairs
 - » Dova Pharmaceuticals
- > Advisory Boards
 - > Amgen
 - Janssen Scientific Affairs
 - » Dova Pharmaceuticals
 - » Bristol-Myers Squibb, Pfizer

The Benign Hematology Curriculum

09/03/2020

Contributors: Content Experts

Affiliation

Kenneth Bauer, MD	Beth Israel Deaconess Medical Center
Nathan Connell, MD, MPH	Brigham and Women's Faulkner Hospital
Kenneth Friedman, MD	Versiti Blood Center of Wisconsin
David Gailani, MD	Vanderbilt University
Shivi Jain MD	Rush Medical Center
Marc Kahn, MD, MBA	University of Nevada, Las Vegas
Molly Mandernach, MD, MPH	University of Florida
Catherine E. McGuinn, MD	Weill Cornell Medicine
Rakesh Mehta, MD	Indiana University School of Medicine
Anita Rajasekhar, MD	University of Florida

The Benign Hematology Curriculum

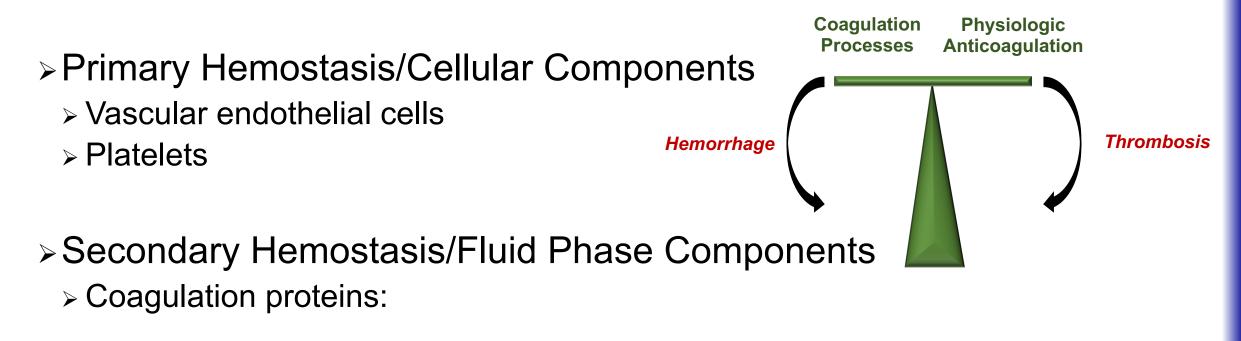
09/03/2020

Material To Cover

- 1. The Hemostatic Balance
- 2. Overview of The Coagulation Cascade and Testing
- 3. Functional and Immuno Assays
- 4. The Prothrombin and Activated Partial Thromboplastin Times
- 5. Other Tests:
 - > Anti-Xa Heparin Assay
 - > Thrombin Time
 - Fibrinogen Assay
 - > **D-Dimer**
- 6. Interpretation of Prolonged PT and/or aPTT Results
- 7. Tests Of Thrombotic Disease
- 8. Heparin Induced Thrombocytopenia/Thrombosis (HITT): Pathophysiology
- 9. Antiphospholipid Antibody Syndrome
- 10. Laboratory Testing for Thrombophilia (Hypercoagulable State)
- 11. APC-Resistance—Screening Assay For Factor V Leiden
- 12. Conditions That Impact Tests for Thrombotic Risk Factors.
- 13. If/When to Do Hypercoagulable Work-up

09/03/2020

The Hemostatic Balance


Module: 1

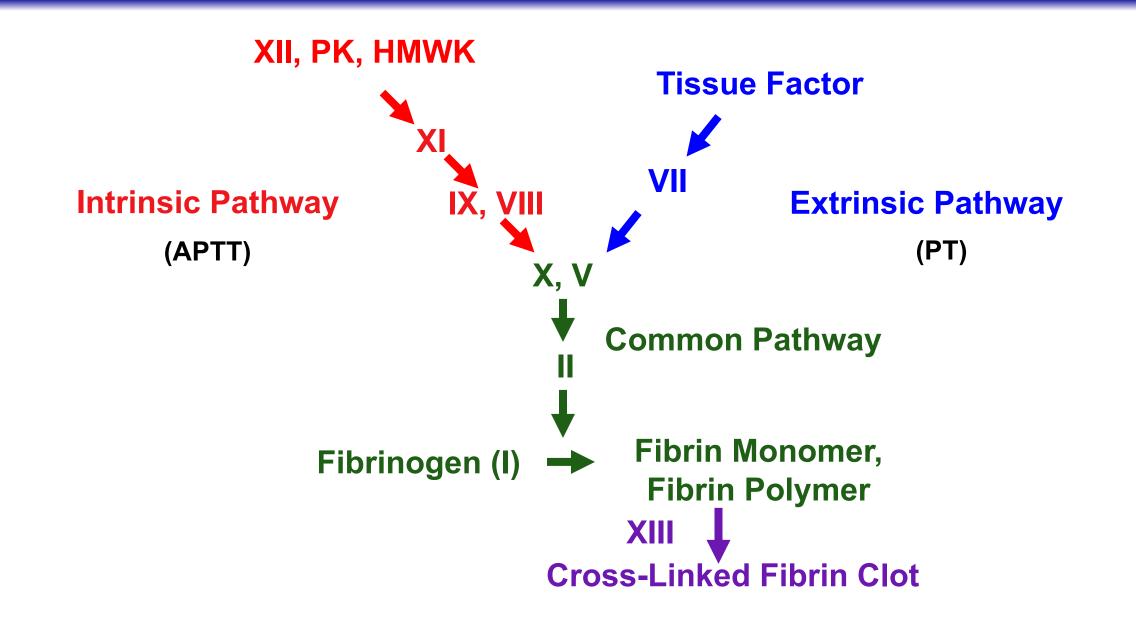
The Benign Hematology Curriculum

09/03/2020

The Hemostatic Balance

Hemostasis is the balance between bleeding and clotting, and involves both cellular and soluble enzymatic components of the blood and vasculature.

09/03/2020



Overview of The Coagulation Testing

Module: 2

The Benign Hematology Curriculum

09/03/2020

The Benign Hematology Curriculum

09/03/2020

There Are Two Ways to Initiate Coagulation System in Vitro

Intrinsic Pathway: Initiated by Negatively Charged Surface

Extrinsic Pathway: Initiated by addition of Tissue Thromboplastin (Tissue Factor and phospholipid)

The Benign Hematology Curriculum

09/03/2020

Preanalytical Considerations

> Specimen Collection

- > 3.2% sodium citrate
- > 9:1 volume of blood to anticoagulant
- > Hct <25% or >50% may affect results
- >Specimen Stability
 - > PT (stable up to 72 h, closed tube at RT)
 - > APTT (stable up to 10 h, closed tube at RT)
 - > APTT for heparin monitoring (stable for 4 h)
 - > Special tests (must be performed within 4 h of collection)
 - If conditions cannot be met plasma must be separated from cells and frozen at 80C

The Benign Hematology Curriculum

09/03/2020

Analytical Considerations

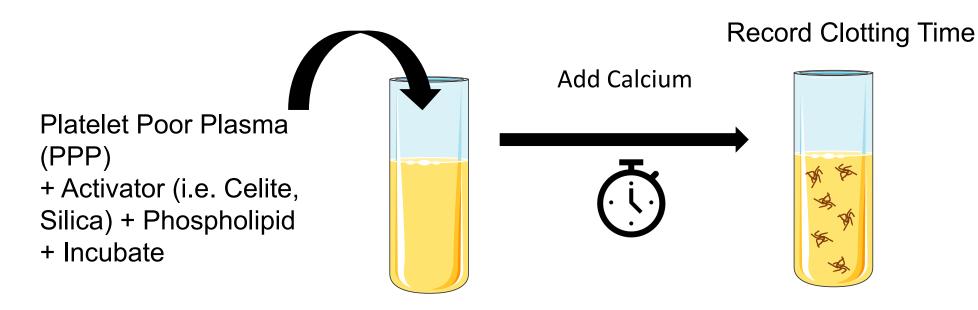
- > Types of Assays
 - ≻Functional
 - >Enzymatic activity
 - Cofactor activity
 - >Immunologic
 - >Protein antigen content

The Benign Hematology Curriculum

09/03/2020

Functional and Immuno Assays

Module: 3


The Benign Hematology Curriculum

09/03/2020

Functional Assays: Clot-Based Assays

- Good screening assays
- Based on a <u>functioning coagulation</u> cascade
- Subject to exogenous and intrinsic interferences

Activated Partial Thromboplastin Time [aPTT]

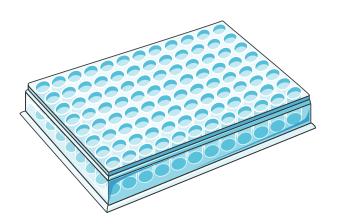
The Benign Hematology Curriculum

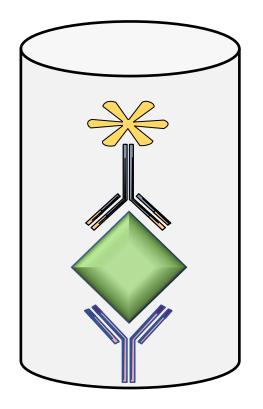
09/03/2020

Functional Assays: Chromogenic Assays Discreet measure of the activity of a **specific enzyme** Affected by *fewer* preanalytical variables. **Enzyme of interest cleaves substrate** Color develops. Peptide Peptide pNA Quantify spectrophotometrically (Product) (Substrate) Absorbance correlates with activity

The Benign Hematology Curriculum

09/03/2020

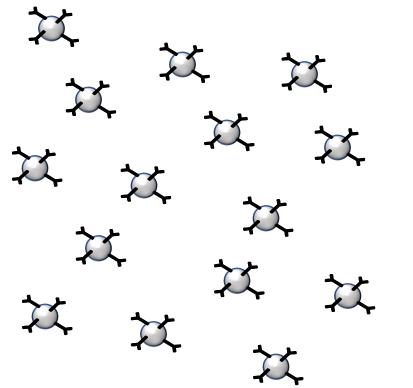

Immunologic Assays


- Latex Induced Agglutination Assays (LIA)
- > Enzyme-Linked Immunosorbent Assay (ELISA)
- > Measures the amount of protein antigen present rather than function.

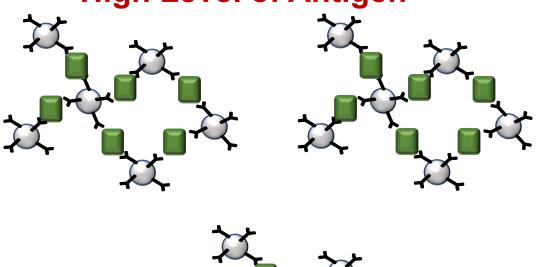
09/03/2020

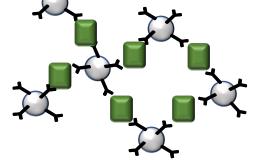
Sandwich ELISA

- > First antibody captures antigen to surface.
- Second antibody, labelled with enzyme, binds to immobilized antigen.
- >Substrate cleaved by conjugated enzyme
- Color development
- > Spectrophotometric quantification



09/03/2020


Latex Agglutination

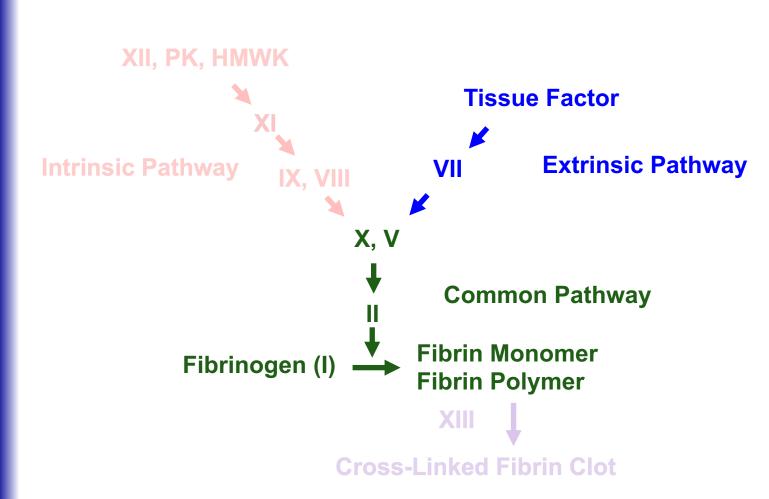

- Antibody coated latex beads
- Agglutination in presence of antigen
- Agglutination is measured optically

Absence/Low Level of Antigen

High Level of Antigen

The Benign Hematology Curriculum

09/03/2020


The Prothrombin and Activated Partial Thromboplastin Times

Module: 4

The Benign Hematology Curriculum

09/03/2020

Prothrombin Time

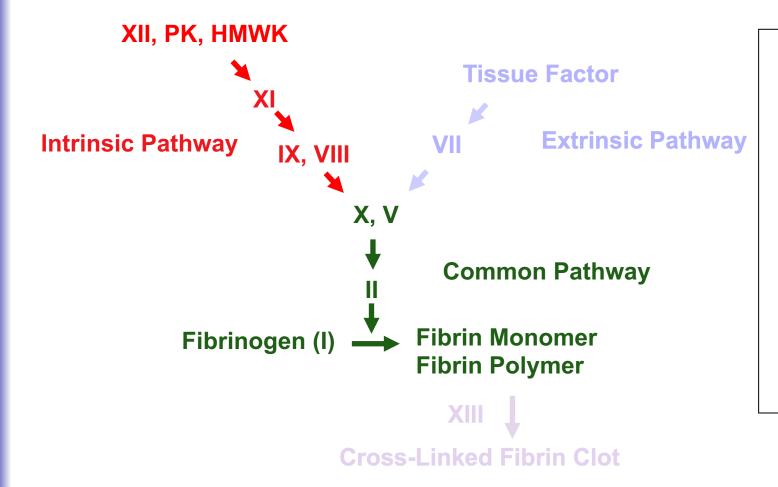
Measures:

 \triangleright

Factors of the Extrinsic
 Pathway (VII) and Common
 Pathway (I, II, V, X)

Major Uses:

- Hemostasis Screening
- Monitoring Warfarin
 Anticoagulation
- > Results:
 - Reported in Seconds and INR.


The Benign Hematology Curriculum

09/03/2020

INR (International Normalized Ratio)

- > INR= International Normalized Ratio
 - > (patient PT/mean normal PT)^{ISI}
 - >ISI= International Sensitivity Index
- > Developed to standardize result reporting, accounting for variation in thromboplastin reagents.
- > INR validated for warfarin titration, but practically used in other settings.

Activated Partial Thromboplastin Time (aPTT)

> Measures:

 Factors of the Intrinsic Pathway (XII, PK, HMWK, XI, IX, VIII) and Common Pathway (I, II, V, X)

Major Uses:

- > Hemostasis Screening
- Monitoring unfractionated heparin therapy.
- > Results:
 - Reported in Seconds

The Benign Hematology Curriculum

09/03/2020

APTT: Monitoring UFH Therapy

> APTT reagents are variably sensitive to UFH

- > Laboratories establish reagent specific therapeutic range
- Reagent standardization has not been successful

> APTT response to heparin may be exaggerated by

- Conditions that elevate the APTT:
 - Concomitant warfarin therapy
 - > Lupus anticoagulant
 - > Liver disease

> APTT response to heparin may be blunted by

- Conditions that shorten the APTT:
 - > Cause of *in vitro* drug "resistance"
 - > Elevated Factor VIII
 - > Antithrombin deficiency

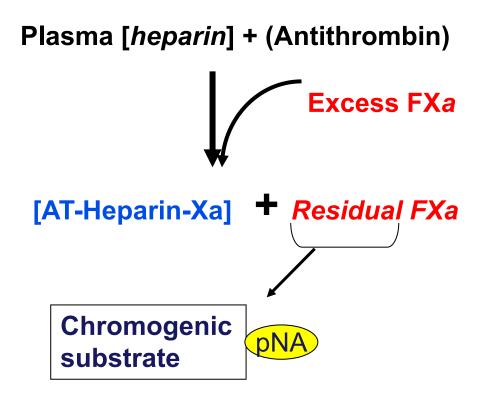
> Alternative: chromogenic anti Xa assay

The Benign Hematology Curriculum

09/03/2020

Other Tests:

- > Anti-Xa Heparin Assay
- > Thrombin Time
- Fibrinogen Assay
- > **D-Dimer**


Module: 5

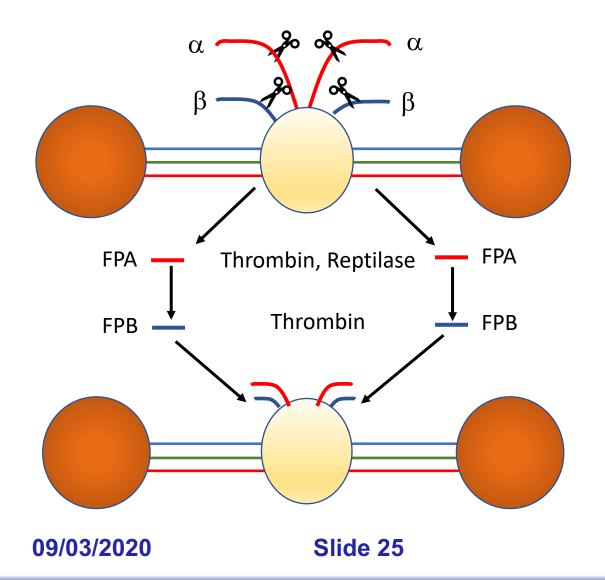
The Benign Hematology Curriculum

09/03/2020

Anti-Xa Heparin Assay: Monitoring UFH & LMWH

- Specifically determines anticoagulant activity of LMWH and UFH by measuring ability of heparin-bound antithrombin to inhibit F Xa
- More specific than aPTT since it measures inhibition of a single enzyme
- Major advantage is **lack** of biologic interference
 - Eikelboom JW. Thromb Haemost 2006;96:547-52.
 - Francis JL. Pharmacotherapy 2004;24:108S-19S.

Color development is **Inversely** proportional to the anticoagulant concentration in the plasma sample

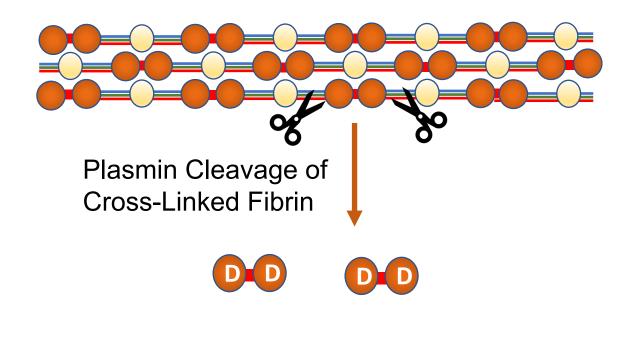

The Benign Hematology Curriculum

09/03/2020

Thrombin Time: Evaluates the Conversion of Fibrinogen to Fibrin

- Dysfibrinogenemia (follow with Reptilase Time)
 - > Thrombin: FPA & FPB
 - » Reptilase: FPA
 - Need fibrinogen result for interpretation
- > Hypo/Dysfibrinogenemia
 - Compare functional fibrinogen with fibrinogen antigen
- » Effect of Heparin:
 - > Thrombin Time prolonged
 - » Reptilase Time not prolonged

The Benign Hematology Curriculum



Comparison of Thrombin Time with Fibrinogen Assay

Similar assay conditions and reaction

- > Fibrinogen + thrombin
 - > Cleavage of FPA, FPB
- > Fibrin monomers
- Fibrin monomer polymerization CLOT
- Fibrinogen Assay
 - > Diluted Patient plasma + excess thrombin
- >Thrombin Time
 - > Patient plasma+ diluted thrombin (~1 U/ml)
 - > Highly sensitive to UFH and direct thrombin inhibitors (dabigatran, argatroban, bivalirudin)

D-Dimer: Degradation Product of Crosslinked Fibrin

Quantitation

LIA TEST

- MoAb to D-dimers linked to microbeads
- > Agglutination of beads occurs in the presence of D-dimers
- > Agglutination is measured optically

Presence indicates activation of both coagulation (thrombin) and fibrinolysis (plasmin).

The Benign Hematology Curriculum

09/03/2020

Utilization of D-Dimer Testing

>DIC

> Reference Range: <243 ng/ml</p>

>Evaluate for DVT/PE

> Rule out thrombosis in the outpatient setting in individuals with low suspicion for thrombosis

- > Cut off: <230 ng/ml</p>
 - > NPV 100%
 - > Specificity 49%
 - Cancer
 - Inflammatory conditions

Reporting Units:

- > D-Dimer Units (DDU)
- > Fibrinogen Equivalent Units (FEU):
- Conversion: 1 FEU = 0.5 DDU

09/03/2020

Interpretation of Prolonged PT and/or aPTT Results

Module: 6

The Benign Hematology Curriculum

09/03/2020

Interpretation of Prolonged PT and/or aPTT Results

- Factor Deficiency
 - > Single vs multiple deficiencies.
 - In general, factor levels must be under 40-50% of normal to prolong the test.
 - Factor XIII deficiency does not prolong PT or aPTT
- > Acquired Inhibitors
 - > Specific factor inhibitor (i.e. F VIII)
- > Global Anticoagulant
 - > Lupus Anticoagulant
 - > Paraproteins
 - > Therapeutic Anticoagulants: UFH, LMWH, Direct Oral Anticoagulants

Sensitivity of PT/aPTT to Factor Deficiencies


Factor	РТ	aPTT
I (Fibrinogen)	Yes	Yes
II (Prothrombin)	Yes	Yes
V	Yes	Yes
VII	Yes	Νο
VIII	No	Yes
IX	Νο	Yes
X	Yes	Yes
XI	Νο	Yes
XII	No	Yes
XIII	Νο	No
Prekallikrein (PK)	No	Yes
High Molecular Weight Kininogen HMWK)	Νο	Yes

The Benign Hematology Curriculum

09/03/2020

Prolonged PT/APTT Work-Up: Mixing Studies

- Mix patient and normal plasma 1:1
 Perform aPTT and/or PT immediately and after 1-hour incubation at 37°C
- In presence of an inhibitor, the 1:1 mix "fails to correct".
- Specific antibodies require time to bind to the antigen target.
- Common inhibitors: heparin, Lupus Anticoagulant, dysproteins, paraproteins, Fibrin Split Products (DIC), factorspecific antibodies.

The Benign Hematology Curriculum

09/03/2020

Mixing Studies

aPTTPatientNormal1:1FactorImmediate51"29"33"Deficiency1 Hour Incubation @ 37°C52"29"32"

Lupus Anticoagulant: Antiphospholipid Antibody

aPTT	Patient	Normal	1:1
Immediate	51"	29"	48 "
1 Hour Incubation @ 37°C	52"	29"	50 "

	aPTT	Patient	Normal	1:1
Anti-Factor VIII	Immediate	51"	29"	33"
Antibody	1 Hour Incubation @ 37°C	52"	29"	50 "

The Benign Hematology Curriculum

09/03/2020

Case Study:

> 84 y.o. female with history of atrial fibrillation considered for cardiac ablation

- Currently on Apixaban
- > Known Hemophilia A Carrier
 - ≻ F VIII: 47%
 - ≻ F IX: 110%
 - ≻ F XI: 105%
- > Abnormal Coagulation Screening Test Result:
 > APTT 110 sec

The Benign Hematology Curriculum

09/03/2020

Mixing study

aPTT	Patient	Normal (22.5-36.5")	50/50 mix
Immediate	92.6"	29.4"	60.7"
1 Hour Incubation @ 37°C	104.1"	29.3"	67.5"

Additional Studies:

Thrombin Time: 13.8 sec. (NI: 13-18 sec.) Apixaban level (Peak): 39 ng/ml. (Peak, therapeutic level, 91-321 ng/mL)

The Benign Hematology Curriculum

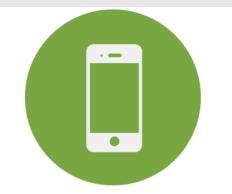
09/03/2020

What is the most likely cause of the prolonged APTT

> 1. Apixaban
> 2. Low F VIII
> 3. Lupus anticoagulant

The Benign Hematology Curriculum

09/03/2020


Questions

The Benign Hematology Curriculum

09/03/2020

CME Credit Instructions Check In to Claim Credit

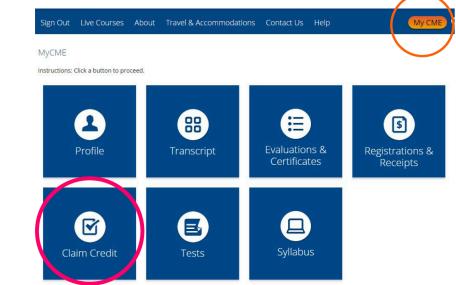
Option 1: Texting

- Add & save your mobile cell phone # to your MyCME Profile
- Text EVENTIDNUMBER to 646-681-7499

If you have successfully checked in, you will receive the following message: Thank you, we have recorded your attendance.

The Benign Hematology Curriculum

09/03/2020


Option 2: Claim Credit on the Portal

*Claim credits within 90 minutes of scheduled meeting time

or

•

- Sign in to your account at www.mskcc.org/cmeportal
- Click My CME
- then click Claim Credit
- enter event ID in the form

Email cme@mskcc.org for EVENTIDNUMBER

The Benign Hematology Curriculum

09/03/2020

Tests Of Thrombotic Disease

Module: 7

The Benign Hematology Curriculum

09/03/2020

Disclosures

Ellinor I. Peerschke, Ph.D.

- Research Support:
 - > None
- > Advisory Boards
 - > None

Gerald A Soff MD

- Research Support:
 - Amgen
 - Janssen Scientific Affairs
 - > Dova Pharmaceuticals
- > Advisory Boards
 - Amgen
 - Janssen Scientific Affairs
 - > Dova Pharmaceuticals
 - » Bristol-Myers Squibb, Pfizer

The Benign Hematology Curriculum

09/03/2020

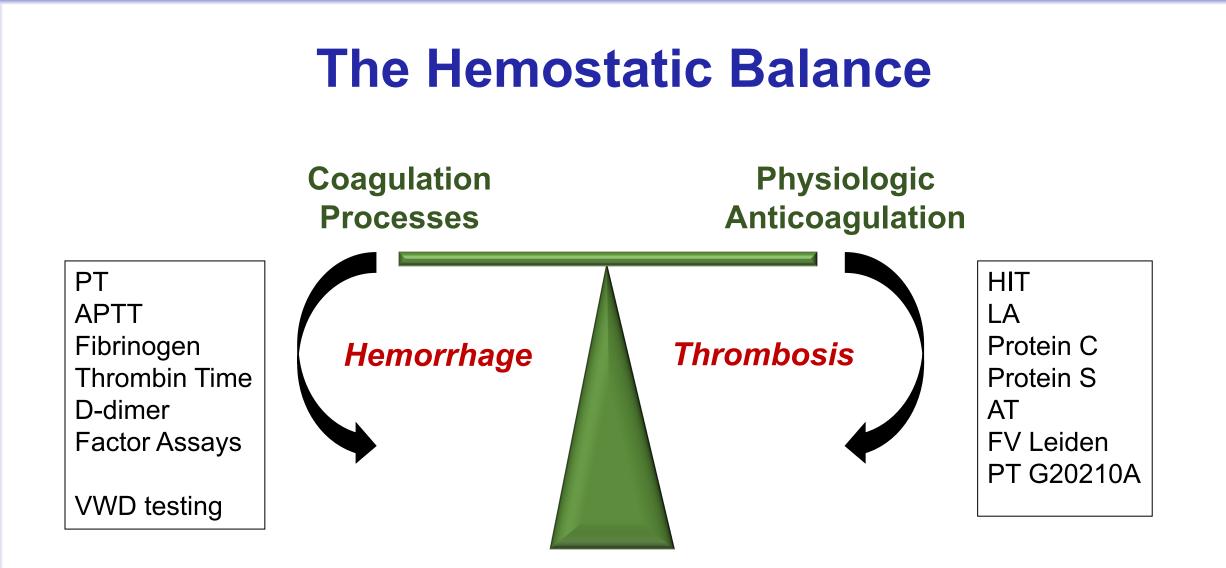
Contributors: Content Experts

Affiliation

Kenneth Bauer, MD	Beth Israel Deaconess Medical Center
Nathan Connell, MD, MPH	Brigham and Women's Faulkner Hospital
Kenneth Friedman, MD	Versiti Blood Center of Wisconsin
David Gailani, MD	Vanderbilt University
Shivi Jain MD	Rush Medical Center
Marc Kahn, MD, MBA	University of Nevada, Las Vegas
Molly Mandernach, MD, MPH	University of Florida
Catherine E. McGuinn, MD	Weill Cornell Medicine
Rakesh Mehta, MD	Indiana University School of Medicine
Anita Rajasekhar, MD	University of Florida

The Benign Hematology Curriculum

09/03/2020


Thrombotic Disease

>Arterial vs venous thrombosis

- >Arterial thrombosis
 - >Vascular Damage

> Platelets

- >No/Limited laboratory tests
- >Venous Thrombosis
 - >Stasis
 - > Decreased regulation of coagulation
 - Increased procoagulant activity
 - >Decreased fibrinolytic activity
 - >Laboratory testing available

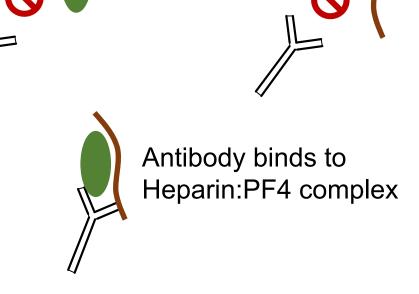
The Benign Hematology Curriculum

09/03/2020

Heparin Induced Thrombocytopenia/Thrombosis (HITT): Pathophysiology

Module: 8

The Benign Hematology Curriculum


09/03/2020

Heparin Induced Thrombocytopenia/Thrombosis (HITT): Pathophysiology

Platelet Factor 4

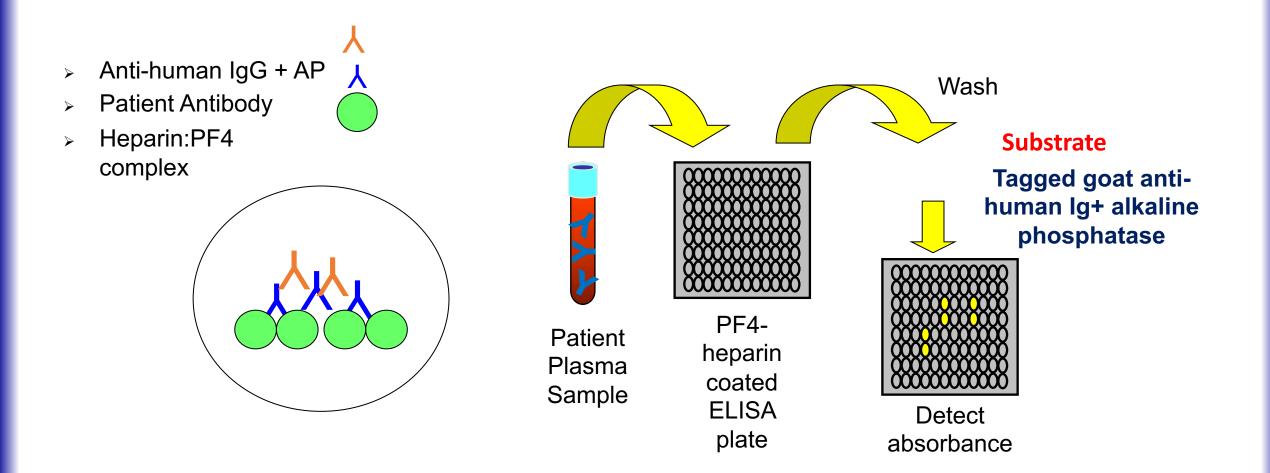
Heparin

Antibody to Heparin:PF4 complex

HITT: Antibody:Heparin:PF4 complex associated with arterial, venous, and microvascular thrombosis.

The Benign Hematology Curriculum

09/03/2020


HIT Testing: Screening ELISA

Antibodies to heparin-PF4 complexes
 Combined IgG, IgA, IgM titers
 IgG titer (OD) more specific
 High Negative Predictive Value

The Benign Hematology Curriculum

09/03/2020

ELISA-Based Assay

The Benign Hematology Curriculum

09/03/2020

4T Scoring System for Pretest Probability

Points	2	1	0
Thrombocytopenia	>50% fall in PLT or PLT nadir of 20K-100K	30-50% fall in PLT or PLT nadir 10K-19K	<30% fall in PLT or PLT nadir of <10K
Timing	5-10 d post heparin [<1 day if previous heparin within 100 days]	unclear or PLT fall after 10 days	PLT fall <5 days and without recent heparin
Thrombosis	New thrombosis, skin necrosis	Progressive or recurrent thrombosis, some skin lesions e.g. erythema	None
Other causes of Thrombocytopenia	None	Possible	Other causes clearly identified

Score <u><</u>3: < 5% chance of HIT Score 4-5: Intermediate risk Score <u>></u> 6: Very high risk of HIT

Cuker, A. et al Blood 2012, 120(20): 4160–4167.

The Benign Hematology Curriculum

09/03/2020

HIT/T RESULTS

Negative ELISA screen– HIT unlikely
 Positive ELISA screen- consistent with HIT/T in the appropriate clinical setting

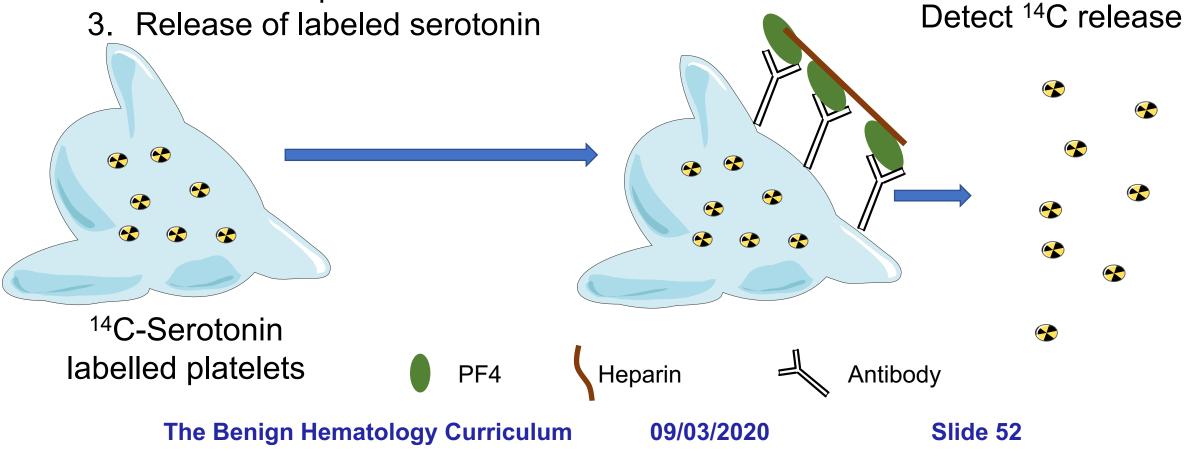
The Benign Hematology Curriculum

09/03/2020

Interpretation of HIT Titers In View of Serotonin Assay Confirmatory Results

HIT Titer (OD)	Probability of Serotonin Assay POSITIVITY
< 0.4	0%
0.4 - < 1.00	< 5%
1.00 - < 1.40	~ 20%
1.40 - < 2.00	~50%
>2.00	>90%

Low titer positive screening test results may not require further work-up


The Benign Hematology Curriculum

09/03/2020

HIT/T Testing: Serotonin Release Assay

Uses fresh platelets, "loaded with¹⁴C-Serotonin" in dense granules.

- 1. Exposure to Antibody:Heparin:PF 4 Complex.
- 2. Activation of platelets

Antiphospholipid Antibody Syndrome

Module: 9

The Benign Hematology Curriculum

09/03/2020

Lupus Anticoagulant

> Prevalence of 1-4% in the general population

> A key component of the Antiphospholipid Antibody Syndrome.

Heterogeneous antibodies against phospholipids and phospholipid binding proteins

>Not usually associated with bleeding

>Arterial/venous thrombosis

> Rarely patients may also have antibodies against F II

Check PT for prolongation

> Prolongs Screening APTT

Clinical APTT reagents are variably sensitive to LA
 Normal APTT does not rule out a LA

09/03/2020

Lupus Anticoagulant Insensitive aPTT Reagents

> Used to rule out significant coagulation factor deficiencies
 > Used to overcome inhibitory effect of LA on clot-based factor assays
 > Normal APTT Actin FS results rule out a significant factor deficiency.

09/03/2020

84 y.o. Patient

aPTT	Patient	Normal (22.5-36.5")	50/50 mix
Immediate	92.6"	29.4"	60.7"
1 Hour Incubation @ 37°C	104.1"	29.3"	67.5"

Additional Studies:

APTT- Actin FS: 32.1 sec

The Benign Hematology Curriculum

09/03/2020

ISTH Guidelines for Lupus Anticoagulant Testing (Pengo V, et al. J Thromb Haemost 2009; 7: 1737–40)

- > Specialized testing is required
- > Two tests based on *different principles*
 - dRVVT (activates common pathway)
 - sensitive aPTT (low phospholipid and silica as activator)
 - > A single test will detect only 60 -80% of cases
 - Both tests used together have a 20% false negative rate for low and intermediate titer lupus anticoagulants
- LA should be considered **positive** if **one** of the two tests gives a positive result
- False positive rate: ~10%
 - > (Dembitzer et al, Am J Clin Pathol 2010; 134:764-773)

09/03/2020

Lupus Anticoagulant Testing: dRVVT

>Dilute Russel's Viper Venom enzyme is a phospholipiddependent procoagulant.

> Thiagarajan P et al, Blood 1986

>DRVVT TEST RESULT:

Ratio SCREEN/CONFIRM

Positive: ratio >1.2

The Benign Hematology Curriculum

09/03/2020

Interpretation of Lupus Anticoagulant Testing

>Interferences

 DOACs (dabigatran, rivaroxaban, apixaban) even at trough levels produce false positive results in 20-40% of patients.
 (Ratzinger F, et al. Thromb. & Haemost. 2016; 116:235-240)

- > Warfarin may produce false positive DRVVT test results
 > Ortel T. Am J Hematol. 2012 May; 87(Suppl 1): S75–S81.
- Heparin may produce false positive aPTT based test results
 Ortel T. Am J Hematol. 2012 May; 87(Suppl 1): S75–S81.

The Benign Hematology Curriculum

09/03/2020

Laboratory Testing for Thrombophilia (Hypercoagulable State)

Module: 10

The Benign Hematology Curriculum

09/03/2020

Laboratory Testing for Thrombophilia (Hypercoagulable State)

No Screening test exists

> Requires a panel of tests

> Diagnosis of an abnormality can be made in ~50% of patients.

- 1. Antiphospholipid Antibody Syndrome.
 - 1. Lupus anticoagulant
 - 2. Anti cardiolipin antibodies
 - 3. Beta 2 glycoprotein I antibodies
- 2. Antithrombin (AT)
- 3. Protein C
- 4. Protein S
- 5. F V Leiden
- 6. Prothrombin G20210A
- 7. Homocysteine (Controversial if should be tested)

The Benign Hematology Curriculum

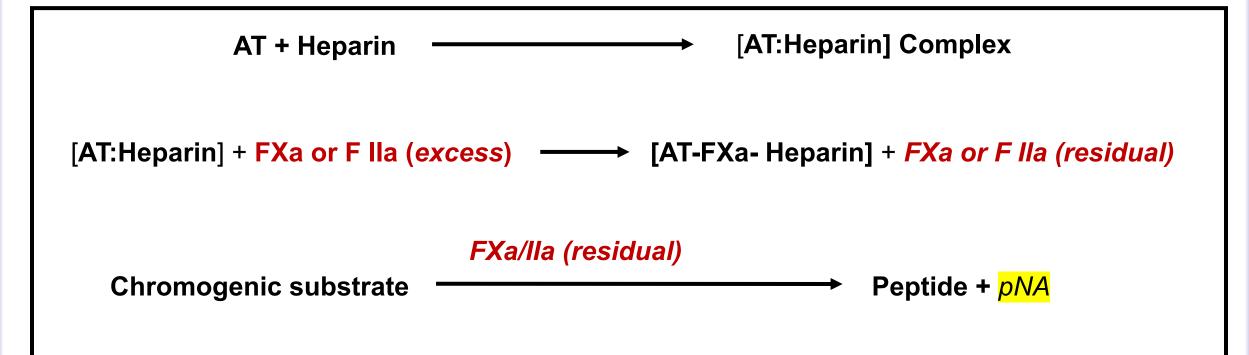
09/03/2020

Physiologic Anticoagulants

Antithrombin (AT)

- > As there is no Antithrombin I or II, it is now commonly referred to as Antithrombin.
- > With heparin/heparan as a cofactor, AT inactivates the activated serine protease enzymes of the coagulation system.
- Factors Xa, IXa, XIa, IIa (thrombin), VIIa.

Protein C/Protein S


- Inactivates the activated cofactors of the coagulation system.
- Factors Va, VIIIa
- > Activate Protein C also has antiinflammatory activity.

The Benign Hematology Curriculum

09/03/2020

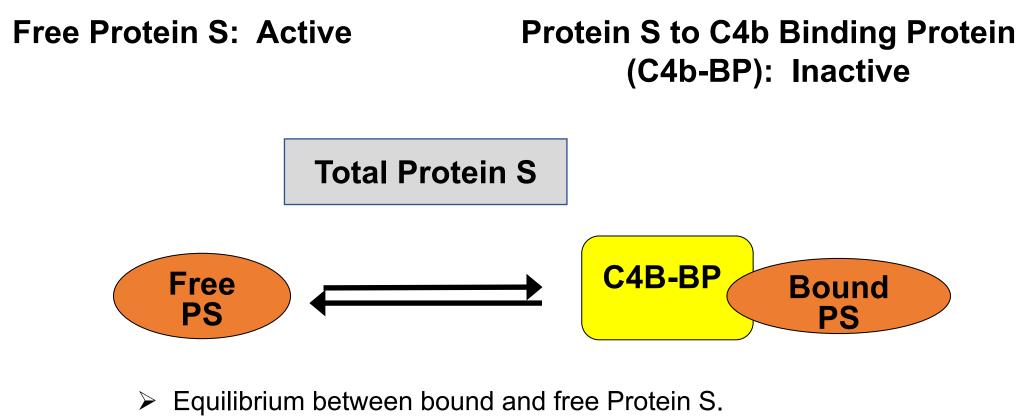
Antithrombin Assay (Functional)

The assay measures functional AT activity in patient plasma.

Result is inversely proportional to the AT activity in the plasma sample.

The Benign Hematology Curriculum

09/03/2020


Protein C Assays

Clot-Based Assay (functional)	Chromogenic Assay (functional)	
 Dilute patient's plasma (1:10) in PC-deficient plasma Incubate; Add CaCl₂ Record time to Clot formation (sec) Prolonged clotting time correlates with PC activity 	 Test Plasma + Venom to activate Protein C Incubate APC + substrate-pNA → release of pNA Hydrolysis of the specific chromogenic substrate correlates with PC activity 	
 Subject to a number of preanalytical variables FVIII FVL Hyperlipidemia DOAC Heparin Lupus Anticoagulant 	 Subject to fewer preanalytical variables Detects most functional defects but not all 	

The Benign Hematology Curriculum

09/03/2020

Protein S Circulates in Two Forms

- > Normally, ~60% of total Protein S is bound.
- Increase in C4B-BP reduces levels of free Protein S.

The Benign Hematology Curriculum

09/03/2020

Three Types Protein S Assays

1. Clot-based functional PS assay—"activity" assay

1. Based on APC inactivation of FVa and FVIIIa

2. Antigenic - Free PS assay (represents functional PS)

- Free PS is adsorbed on the C4BP latex particle → triggers an agglutination reaction with the second latex reagent which is sensitized with a monoclonal antibody directed against human Protein S
- 2. The degree of agglutination is directly proportional to the free PS concentration

3. Antigenic - Total PS assay

1. Immunologic assay that measures PS bound to C4BBP + free PS

09/03/2020

Three Types of Protein S Deficiencies

Туре	PS (Activity)	PS (Free)	PS Total	C4B-BP
I	Decreased	Decreased	Decreased	Normal
П	Decreased	Normal	Normal	Normal
Ш	Decreased	Decreased	Normal	Elevated

- > Type 1 is most common hereditary pattern.
 - > (Although hereditary protein S deficiency is rare).
- \succ Type 3 is usually an acquired state.
 - Observed in some inflammatory or reactive states, due to elevated C4B-BP Levels.
 - This contributes to the hypercoagulable state of pregnancy and with use of estrogen containing oral contraceptives.
 - ➢ Malm, J et al. British J. Haemat. 1988.

09/03/2020

APC-Resistance/Factor V Leiden

Module: 11

The Benign Hematology Curriculum

09/03/2020

APC-Resistance—Screening Assay For Factor V Leiden

> Ratio of aPTTs (+/- APC)

<u>(aPTT with APC)</u> (aPTT without APC)

- > Normal Ratio >2.0
- > 90% of APC Resistance is caused by a defect in the Factor V molecule
- "Screening assay" for FVL mutation
- Sensitivity and specificity approach 100% with modified assay
 - > Uses FV-deficient normal plasma + patient plasma

- a. Screening assay is affected by
 ➢ Lupus anticoagulant
 ➢ DOAC
- b. High FVIII levels may lower APC ratio (pregnancy/inflammatory states)
- c. Decreased II and X (<50%) may produce higher APC ratios
- d. DNA-based assay confirms FVL

The Benign Hematology Curriculum

09/03/2020

Molecular Assays: PCR Assays

Factor V Leiden

- Caused by single point mutation in the FV gene
- Substitution of adenine for guanine at 1691 – G1691A
- Changes arginine to glutamine at 506 R506Q
- Molecular mechanism of most cases of APC Resistance

F II Polymorphism

- Single nucleotide substitution
 G20210A in the 3' UT regions of the prothrombin gene
- > G \rightarrow A substitution at nucleotide 20210 in prothrombin gene
- > Results in elevated levels of prothrombin (~30% increase)
- > No screening test available

The Benign Hematology Curriculum

09/03/2020

Conditions That Impact Tests for Thrombotic Risk Factors

Module: 12

The Benign Hematology Curriculum

09/03/2020

Conditions That Impact Tests for Thrombotic Risk Factors.

- > Accelerated Factor Consumption
 - > Recent/Acute thrombosis
 - > DIC, surgery, trauma
- > Reduced Synthesis
 - Liver disease, Vitamin K deficiency
 - Estrogen

- Interference by Anticoagulant Therapy
 - ➤ Warfarin
 - > Decreased Protein C and S
 - Heparin
 - > Decreased AT
 - > DOAC
 - False positive lupus anticoagulant
 - False increase in clot-based PC, PS, AT assays
 - False negative APC Resistance ratio

The Benign Hematology Curriculum

09/03/2020

Effects of Anticoagulants on Laboratory Testing

Functional Assays

- Clot-based assays
 - > Dose dependent inhibition/prolongation of coagulation
- > Chromogenic assays
 - > Variable effect depending on reaction and substrate

> Antigenic assays

- > ELISA or LIA technologies
- Not affected

> DNA-based assays

> Not affected by anticoagulant therapy

If/When to Do Hypercoagulable Work-up

Module: 13

The Benign Hematology Curriculum

09/03/2020

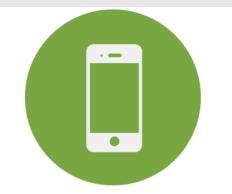
Hypercoagulable Work-up

- >Why work-up?
 - > Avoidance of oral contraceptives
 - Family knowledge
- Growing Consensus in Hematologic Community is to not routinely do hypercoagulable workup.
- Studies fail to show recurrent VTE rates associated with thrombophilia.

Routine Testing for Hereditary Thrombophilias in Patients With a First VTE ?

- * "Routine testing for hereditary thrombophilias in patients with a first VTE is not helpful in predicting risk of recurrence or altering initial therapy."
 - > Galioto et al, Am Fam Physician. 2011 Feb 1;83(3):293-300
 - Christiansen et al . JAMA. 2005;293(19):2352–2361.
 - > Kearon et al. Chest. 2008;134(4):892]. Chest. 2008;133(6 suppl):454S-545S.
 - > Baglin T et al Lancet. 2003;362(9383):523-526.
 - > Ho et al. Arch Intern Med. 2006;166(7):729–736.
 - > Segal JB et al. Evid Rep Technol Assess. 2009(180):1–162.

09/03/2020


Questions?

The Benign Hematology Curriculum

09/03/2020

CME Credit Instructions Check In to Claim Credit

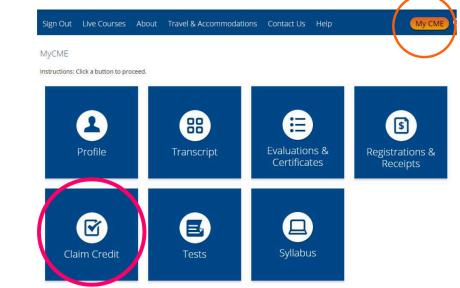
Option 1: Texting

- Add & save your mobile cell phone # to your MyCME Profile
- Text EVENTIDNUMBER to 646-681-7499

If you have successfully checked in, you will receive the following message: Thank you, we have recorded your attendance.

The Benign Hematology Curriculum

09/03/2020


Option 2: Claim Credit on the Portal

*Claim credits within 90 minutes of scheduled meeting time

or

•

- Sign in to your account at www.mskcc.org/cmeportal
- Click My CME
- then click Claim Credit
- enter event ID in the form

Email cme@mskcc.org for EVENTIDNUMBER

The Benign Hematology Curriculum

09/03/2020