Pre-transfusion testing: Fundamentals of blood typing & cross match

Monika Paroder, MD, PhD

Montefiore Medical Center

mparoder@montefiore.org

Jamal Carter, MD

Montefiore Medical Center

James Szymanski, MD

Montefiore Medical Center

Joan Uehlinger, MD

Montefiore Medical Center

Speaker(s) and Co-Authors

Disclosures

> None

Objectives

- 1. Describe different blood groups/ blood group antigens and understand what determines their clinical relevance
- 2. Understand why pretransfusion testing is performed, the components of pretransfusion testing and the clinical implications of the results
 - Routine Serologic Testing
 - Type and Screen
 - Antibody Identification
 - Crossmatch
 - Additional Testing
 - Direct Antiglobulin Test (DAT)
 - Elution
 - Adsorption
 - Phenotyping/Genotyping

Blood Transfusion: Historical Perspective

1818: First human-to-human transfusion when patient survived

THE LANCET.

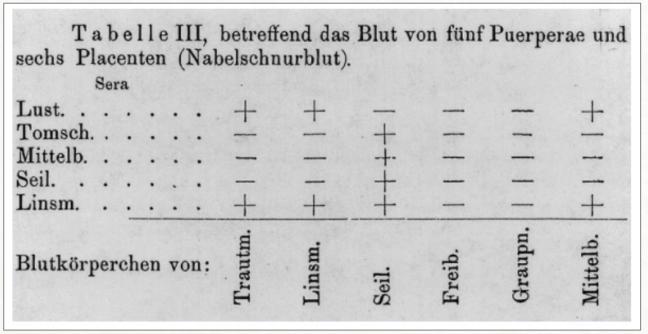
LONDON, SATURDAY, JUNE 13.

f1398.0.

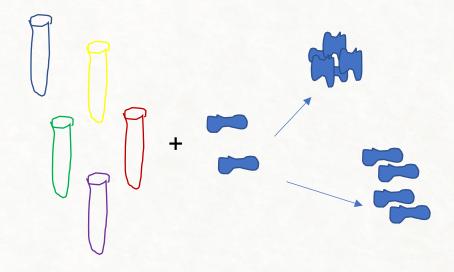
seems right, as the operation now stands, to confine transfusion to the first class of cases only, namely, those in which there seems to be no hope for the patient, unless blood can be thrown into the veins.

The object of the Gravitator is, to give help in this last extremity, by transmitting the blood in a regulated stream from one individual to another, with as little exposure as may be to air, cold, and inanimate surface; ordinary venesection being the only operation performed on the person who emits the blood; and the insertion of a small tube into the vein usually laid open in bleeding, being all the operation which it is necessary to execute on the person who receives it.

HematologyEducationOnline


Slide 4

April 14, 2022



"Rules" for transfusion: Discovery of ABO blood group antigens

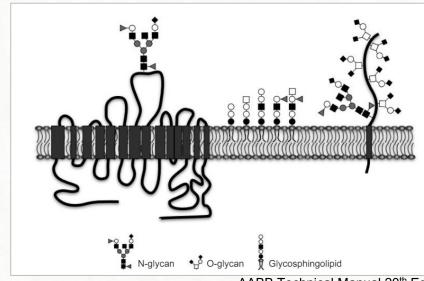
1901: Landsteiner's Experiment

Schwarz et al. (2003) British Journal of Haematology

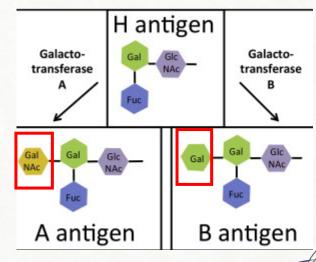
- Recognized a pattern of agglutination
- Blood can be divided into "groups"
- Marked the discovery of the ABO blood group system

ABO histo-blood group antigens

Slide 6

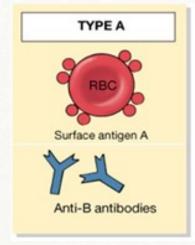

ABO antigens

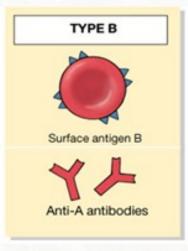
- Carbohydrate
- Defined by 3-sugar terminal epitope on glycolipids and glycoproteins
- Expressed on non-erythroid cells ("histo blood group antigens")
- soluble antigens in saliva/other body fluids (secretors)
- ~1 million ABO antigens on each human RBC

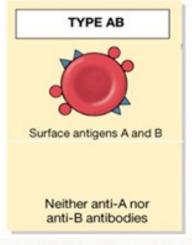

The ABO gene locus encodes glycosyltransferases

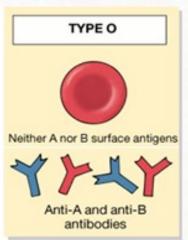
3 alleles/6 genotypes/4 phenotypes

Physiological functions remain unknown

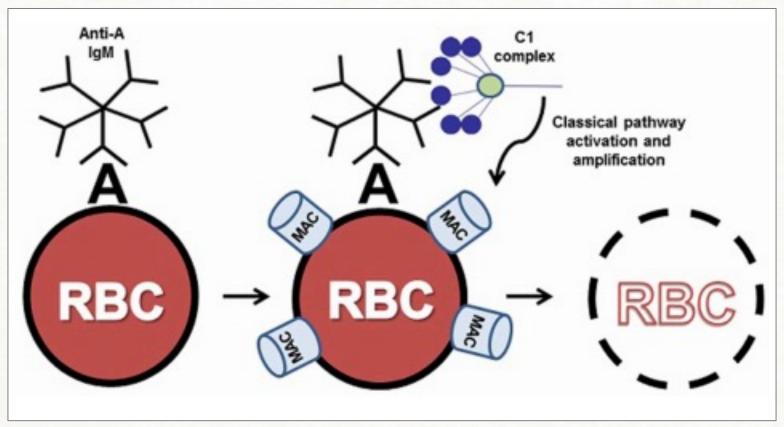

AABB Technical Manual 20th Ed




Antibodies to ABO antigens


Isohemagglutinins (i.e., anti-A, anti-B)

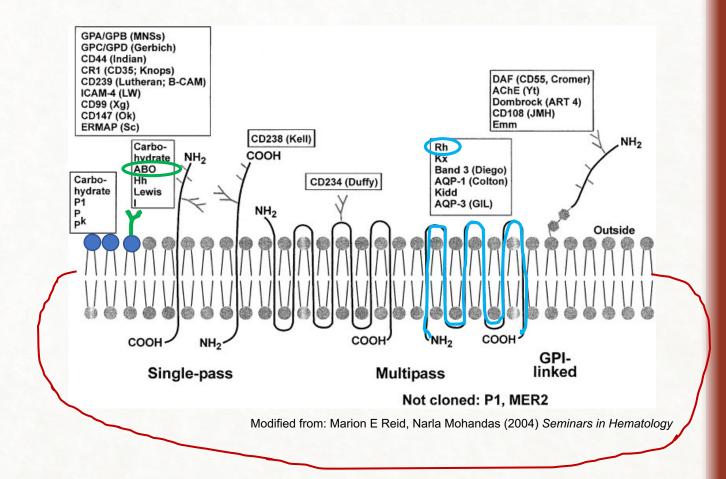
- "Naturally occurring"
- NOT in response to foreign RBC exposure (transfusion, pregnancy, etc.)
- exposure response to substances in the environment that resemble non-self RBC antigens
- Formed during the first years of life
- IgM (except anti-A,B, IgG); titers vary



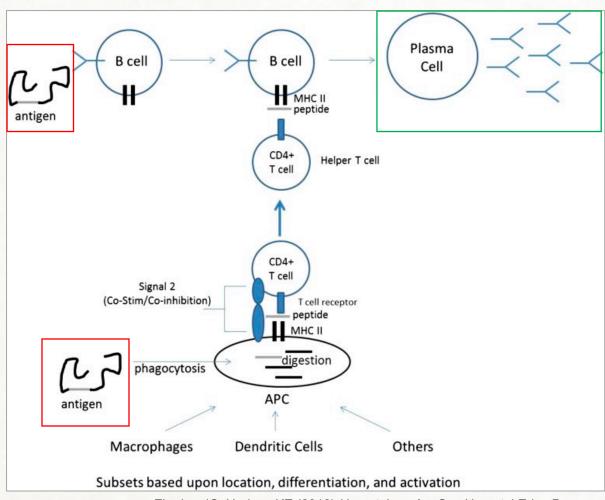
Slide 7

April 14, 2022

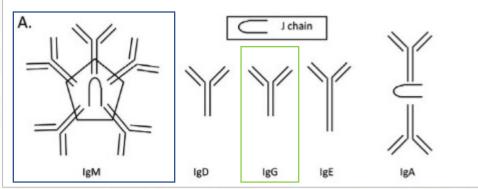
ABO antibodies necessitate administration of donor RBCs <u>lacking</u> the corresponding antigen


Sharp JA et al (2014) Frontiers in Immunology

Other Blood Group Antigens


Antigens:

- >300 antigens (36 blood group systems)
 are known
- Polymorphic, inherited, carbohydrate or protein structures located on the extracellular surface of the RBC membrane.



Alloantibodies ("unexpected" antibodies)

Zimring JC, Hudson KE (2016) Hematology Am Soc Hematol Educ Program.

AABB Technical Manual 20th Ed

- Formed in response to sensitization from a previous exposure event (transfusion or pregnancy)
- Some can develop "naturally" (i.e., Le, P, M, N)
- Clinical significance varies

Alloimmunization

- □ RBC Allo-Antibodies are found in 0.3-2% of population.
- SCD pts have higher rates (15 40%) of alloimmunization compared to other groups receiving multiple transfusion
- □ Alloimmunization risk is 1-1.6% per RBC unit transfused
- Immunization to RBC antigens may result from:
 - Pregnancy
 - Transfusion
 - Passively acquired produced in another individual and then transfused to the patient plasmacontaining blood products or derivatives like IVIG

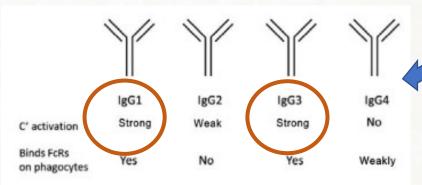
The importance of obtaining patient history

-If a patient has no history of Transfusion, Pregnancy or Transplant it is <u>unlikely</u> that they have Allo-Antibodies -If a patient <u>has ever</u> had a clinically significant antibody identified then antigen negative blood <u>must</u> be provided

Clinical relevance of blood group antigens for transfusion lies in their ability to incite an immune response and the nature of that response

Immunogenicity of Ag

Table 3–7 Rela	ative Immunoger erent Blood Grou	up Antigens
BLOOD GROUP ANTIGEN	BLOOD GROUP SYSTEM	IMMUNO- GENICITY (%)
D (Rh _o)	Rh	50
K	Kell	5
c (hr')	Rh	2.05
E (rh'')	Rh	1.69
k	Kell	1.50
e (hr'')	Rh	0.56
Fy ^a	Duffy	0.23
C (rh')	Rh	0.11
Jka	Kidd	0.07
s	MNSs	0.04
Jk ^b	Kidd	0.03
s	MNSs	0.03

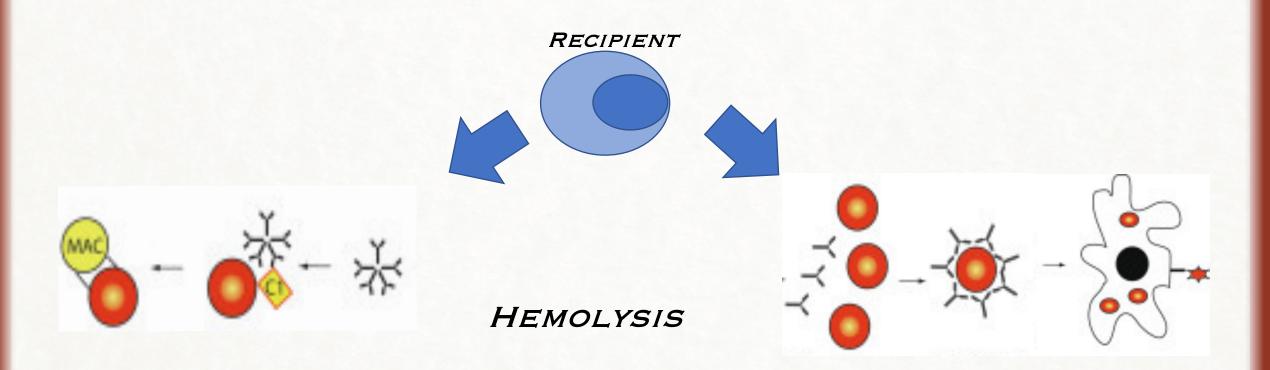

Adapted from Kaushansky, K, et al: Williams Hematology, 8th ed. McGraw-Hill Professional, New York, 2010.

*Percentage of transfusion recipients lacking the blood group antigen (in the first column) who are likely to be sensitized to a single transfusion of red cells containing that antigen.

Type of response

	lgM 💥	lgG ∰
Biologic $t_{1/2}$	5 d	21 d
Complement Fixation	+++	+
Placental Transfer	No	Yes
Reactivity	<22 C**	37 C
Clinically Significant	Usually not**	Usually

**exception: ABO



AABB Technical Manual 20th Ed

April 14, 2022

Harmening, DM. Modern Blood Banking and Transfusion Practices 7th Ed.

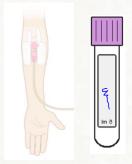
Intravascular and extravascular hemolysis

Transfused RBCs should lack antigens to which the recipient has antibodies

Why do we need to perform serologic pre-transfusion testing?

Selection of appropriate blood units for recipient = ensure RBCs given are compatible with recipient plasma in order to prevent destruction of transfused RBCs and prevent harm to patient

Serologic Testing Overview


Collect/labeling specimen

ABO and Rh Type

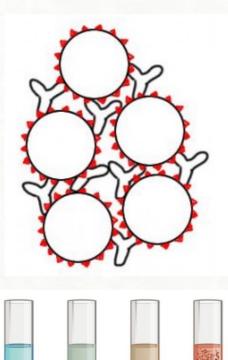
Antibody Screen

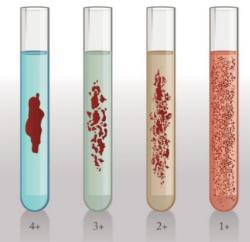
Antibody ID

Select units and crossmatch

Additional Testing DAT Elution Adsorption Pheno/Genotyping

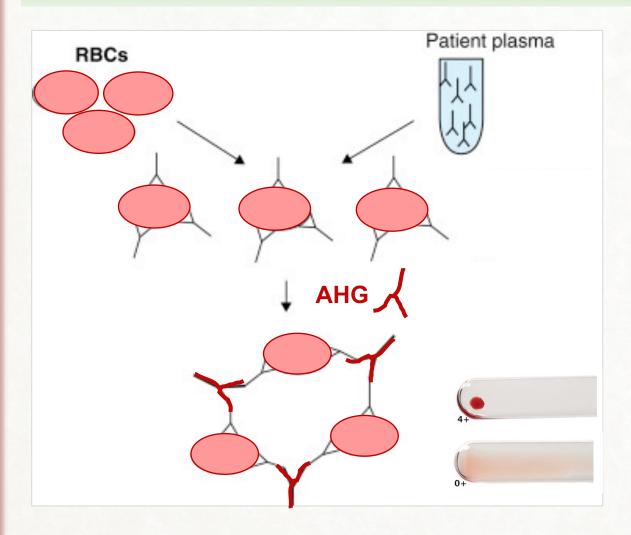
Release unit


Hemagglutination is the basis for all BB testing


Agglutination = clumping

 RBCs are bound together by an Ab → visible aggregates ("agglutinates")

Agglutinates are graded on a scale of 0-4


Abs vary in ability to agglutinate RBCs

Direct vs Indirect Antiglobulin Test

Direct Antiglobulin Test (DAT) = Coombs

Detects antibodies bound to RBCs (in vivo antibody reactivity)

Indirect Antiglobulin Test (IAT) = Indirect Coombs

 Detects antibodies in plasma, unbound to RBCs (in vitro antibody reactivity)

Routine Serologic Pre-transfusion Testing

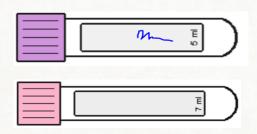
I. Type

What is the ABO and RhD type? (ensure ABO compatibility)

II. Screen

Are there <u>unexpected</u> antibodies in the patient's serum that may react with other antigens on the donor RBC?

III. Antibody Identification


What are those unexpected antibodies – Ab ID? Performed only if screen is positive

IV. Crossmatch

Ensure all antigen compatibility

Specimen Requirements

Pink or Purple EDTA tubes (usually 2)

- Signed and Dated
- 2 unique identifiers
- 5-10 mL whole blood aliquot is usually enough for simple antibody identification
- 2 different specimens

Specimen Expiry

Outpatient:

- 30 days if <u>NOT Pregnant/transfused</u> within the last 3 months
- 3 days if Pregnant/transfused within the last 3 months

Inpatient:

• 3 days

Neonates (<4 mo):

- Valid throughout the same admission
- Maternal sample as an alternative

Sun	Mon	Tues	Wed
Sample drawn @ 1 pm	Sample used	Sample used	Sample expires @ midnight
Day 0	Day 1	Day 2	Day 3

Serologic Testing Overview

Collect/labeling specimen

ABO and Rh Type

Antibody Screen

Antibody ID

Select units and crossmatch

Additional Testing
DAT
Elution
Adsorption
Pheno/Genotyping

Release unit

HematologyEducationOnline

Slide 20

April 14, 2022

I. Blood Type - ABO

ABO Grouping

- Antigen typing of patient RBCs (forward type)
- Screening serum for anti-A and Anti-B (reverse type)

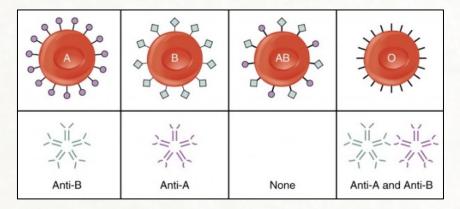
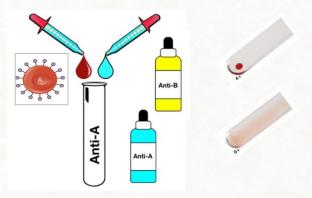
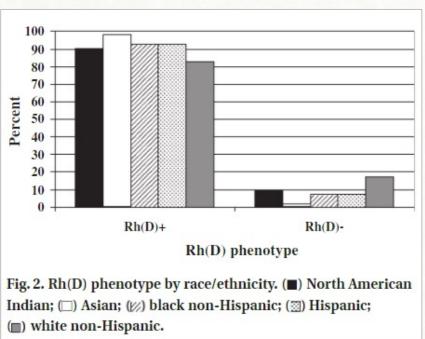
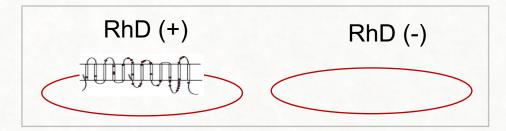



TABLE 2. Distribution (%)* of ABO phenotypes by race/ethnicity Phenotype AB Race or ethnicity Number 0 White non-Hispanic 2.215.623 45.2 259,233 31.1 Hispanic† 56.5 2.5 Black non-Hispanic 4.3 236,050 50.2 Asian‡ 126,780 7.1 North American Indian 19.664 2.5 All donors 3.086.215 4.1

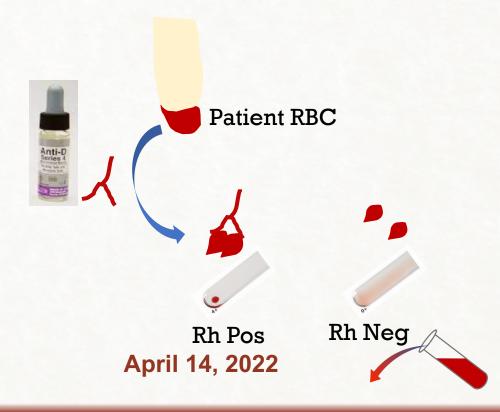
Garratty G et al. (2004) Transfusion

1. <u>FORWARD TYPING</u>: Is A or B antigen on the surface of RBCs?


2. <u>REVERSE TYPE</u>: Is Anti-A or Anti-B present in the patient's plasma?


RhD Typing

Why are RBCs routinely typed for D?


- D antigen is highly immunogenic
- · anti-D antibodies can cause significant HDFN
- Rh compatible units should be provided

Garratty G et al. (2004) Transfusion

Is D antigen present on patient cells?

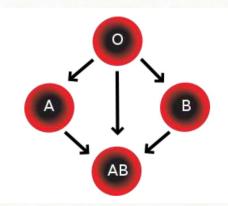
ABO compatibility matching rules for blood products

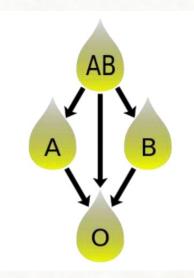
RBCs

ABO matched/compatible with recipient plasma

Granulocytes

ABO matched/compatible with recipient plasma


Per AABB Standards, if > than 2 mL of RBCs are present in any product, those RBCs must be compatible with the recipient's plasma antibodies.

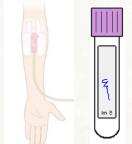


FFP - ABO matched/compatible with recipient RBCs

Platelets – Rh matched; typically, not ABO matched due to inventory, although preferably ABO-compatible

Cryo – not matched

Serologic Testing Overview

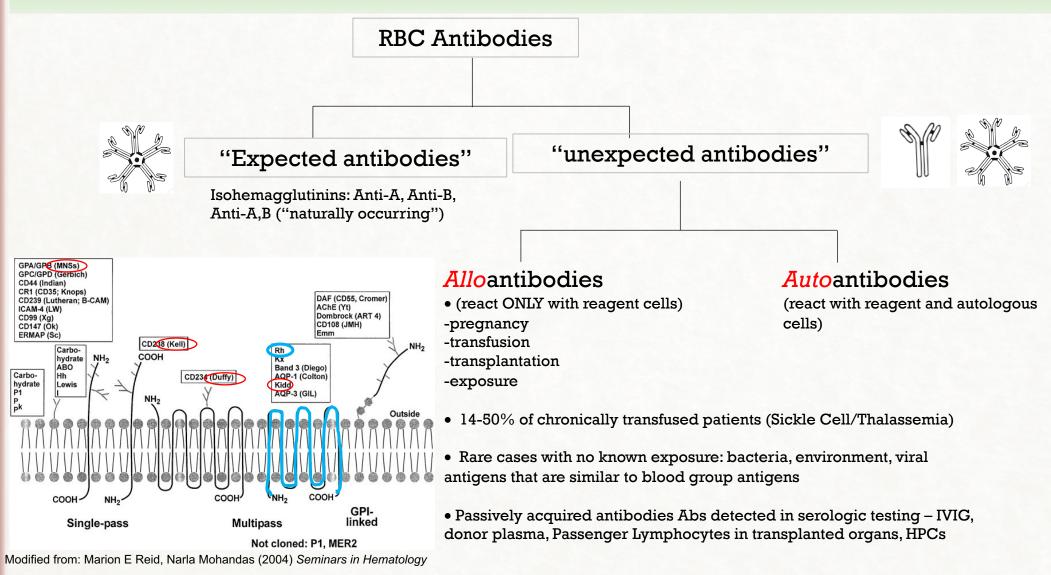

Collect/labeling specimen

ABO and Rh Type

Antibody Screen

Antibody ID

Select units and crossmatch

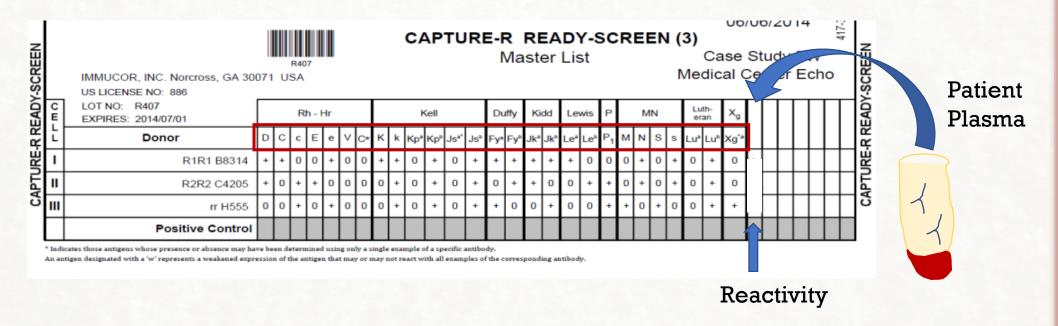


Release unit

RBC antibodies

II. Antibody screen

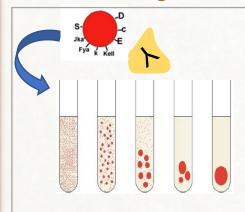
Screening Cells:


2 cells; reagent RBCs

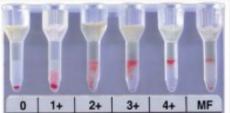
Type O = will not detect any ABO antibodies

Per FDA requirement, collectively express the following 18 antigens:

D, C, E, c,e, M, N, S,s, P1, Lea, Leb, K, k, Fya, Fyb, Jka, Jkb

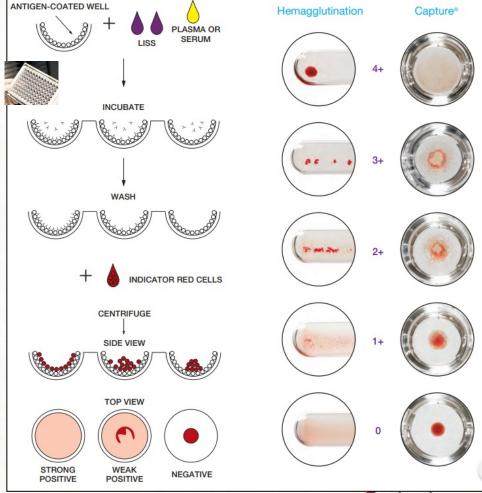

3 cell panels typically homozygous for D, C, E, c, e, k, M, N, S, s, Fya, Fyb, Jka, Jkb

Antibody detection methodology


Tube Testing

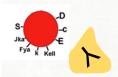
- Plasma and test cell interaction in tube
- Assess for agglutination

Gel Testing



- Plasma and test cell interaction in chamber
- Centrifugation of RBCs through gel column
- Agglutinates remain on top

Solid Phase



Phases of Reaction

Donor	Cell number	D	С	С	Е	е	Cw	к	k	Kpª	Кр ^ь	Jsª	Js ^b	Fy ^a	Fy ^b	Jk ^a	Jk ^b	Le ^a	Le ^b	P ₁	М	N	s	s	Lu ^a	Lub	Xgª	IS	37	AHG	СС
R₁r	1	+	+	+	0	+	0	0	+	0	+	0	+	+	+	+	+	0	+	+	+	+	+	+	0	+	+	0	0	2+	
R ₁ R ₁	2	+	+	0	0	+	+	+	+	0	+	0	+	0	+	+	0	0	0	+	+	0	+	0	0	+	+	0	0	0	3+
R ₂ R ₂	3	+	0	+	+	0	0	0	+	0	+	0	+	+	0	0	+	0	+	+	0	+	0	+	0	+	+	0	0	3+	

Phase of Rxn	Ab type detected	Mechanism	Types of Abs Detected
IS	IgM	IgM react best at lower temp	ABO, cold-reacting Allo/Auto
37 C	IgG	IgG react best at warm temp	Warm-reacting abs
AHG/37 C (IAT)	IgG	AHG displays specificity for the Fc portion of the heavy chain of IgG or complement "bridges" IgG molecules	Warm-reacting abs

	A, B, H	
Immediate Spin Phase	M, N Lea, Leb P1	lgM
Antiglobulin Phase (37°C)	D, C, E c,e K, Fy, Jk S, s Leª, Leb	lgG

Serologic Testing Overview

Collect/labeling specimen

ABO and Rh Type

Antibody Screen

					F	₹h						ı	(ell			Du	ffy	Ki	dd	Lev	wis	Р		MN	IS		Luth	eran	Xg	Re	sults
		D	С	Ε	С	е	f	٧	C w	K	k	Kp a	Кр ь	Js a	Js b	Fyª	Fy _b	Jk a	Jk b	Leª	Le b	P1	М	N	S	S	Lua	Lu ^b	Xg a	IS	IAT
ī	R_1R_1	+	+	0	0	+	0	0	0	0	+	0	+	0	+	+	+	0	+	0	+	0	0	+	+	0	0	+	+	0	0
П	R ₂ R ₂	+	0	+	+	0	0	0	0	0	+	0	+	0	+	+	0	+	+	+	0	+	+	0	+	+	0	+	0	0	0
III	rr	0	0	0	+	+	+	0	0	+	+	0	+	0	+	0	+	+	0	0	+	0	+	0	0	+	0	+	+	0	0

Select units and crossmatch

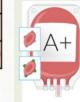
Release unit

Serologic Testing Overview

Collect/labeling specimen

ABO and Rh Type

Antibody Screen


Antibody ID

Select units and crossmatch

					F	₹h						ı	Kell			Du	iffy	Ki	dd	Lev	wis	Р		M	NS		Luth	eran	Xg	Re	sults
		D	С	Ε	С	е	f	٧	C w	K	k	Kp a	Кр ь	Js a	Js b	Fyª	Fy b	Jk a	Jk b	Leª	Le b	P1	M	N	S	S	Luª	Lu ^b	Xg a	IS	IAT
ı	R_1R_1	+	+	0	0	+	0	0	0	0	+	0	+	0	+	+	+	0	+	0	+	0	0	+	+	0	0	+	+	0	0
Ш	R ₂ R ₂	+	0	+	+	0	0	0	0	0	+	0	+	0	+	+	0	+	+	+	0	+	+	0	+	+	0	+	0	0)
Ш	rr	0	0	0	+	+	+	0	0	+	+	0	+	0	+	0	+	+	0	0	+	0	+	0	0	+	0	+	+	0	3+

Release unit

III. Antibody Identification (AbID)

An antibody is detected "(+) Screen"... now what?

- 1) Is it an allo or an auto?
- 2) What is the specificity (AbID)?
- 3) Is it clinically significant? (i.e., a/w HDFN, hemolytic transfusion reactions, result in notable decrease in transfused RBC survival)

Caveats:

- Clinical significance varies even with antibodies of the same specificity
- Some antibodies are known to cause HDFN, while others may result in a (+) DAT in the fetus but no clinical HDFN
- Red Cell Antigen Expression can vary reaction strength can vary and so reactivity of these antibodies can be less apparent

Antibody Panel = extended antibody screen to determine AbID

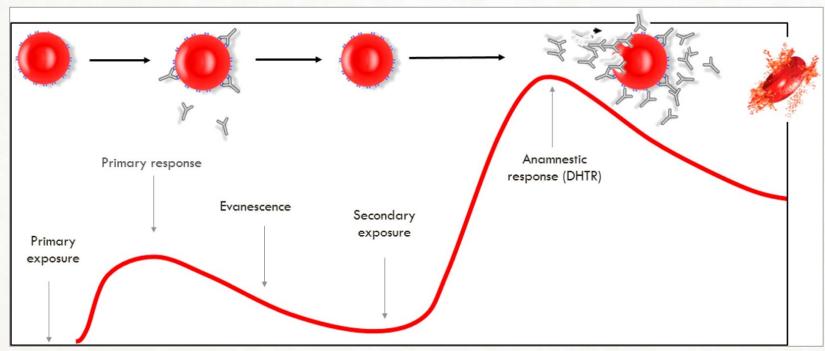
- Test against several reagent RBCs of known phenotype
- Pattern of reactivity aids in identification
- "Rule out" antibodies not present in patient's plasma = no reaction
- "Rule in" antibodies present in patient's plasma = reaction

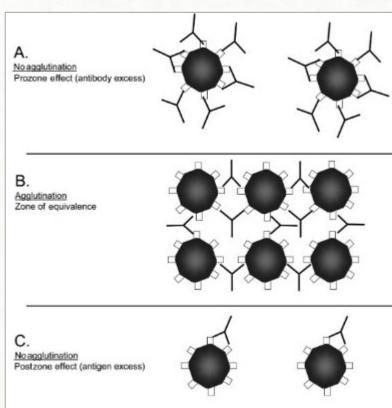
Donor	Cell number	F)	<i>F.</i>	700	Е	2	Ç	Ř	K	Kp ^a	Kړه	Jsª	Jsb	Fy ^a	F/º	Ka	,lkb	l ea	l ab	101	УÃ	N	53	9	Lua	Lu ^b	Xg ^a	IS	37	AHG	c
R₁r	1	+	+	+	0	+	0	0	+	0	+	0	+	\oplus	+	+	+	0	+	+	+	+	+	+	0	+	+	0	0	23	
R ₁ R ₁	2	1	1	0	0	1	7	J.	1	0	*/	0	/	0	1	/	0	0	0	F	1	0	1	0	0	+	+	0	0	0	3
R ₂ R ₂	3	+	0	+	+	0	0	0	+	0	+	0	+	(1)	0	0	+	0	+	+	0	+	0	+	0	+	+	0	0	3 →	Г
R ₀ r	4	+	0	+	0	+	0	0	+	0	+	0	+	①	0	+	+	+	0	0	+	0	+	+	0	+	0	0	0	3+	
rr	5	0	+	+	0	+	0	0	+	0	+	0	+	0	0	0	1	0	1	+	+	0	+	+	0	+	0	0	0	0	;
r"r	6	0	0	+	+	+	0	0	+	0	+	0	+	\oplus	+	0	+	0	+	+	0	+	0	+	0	+	+	0	0	2+	
rr K	7	0	0	+	0	+	0	+	+	0	+	0	+	\oplus	+	+	+	0	+	0	+	+	0	+	0	+	+	0	0	2	
rr	8	0	0		0	+	0	0	+	0	+	0	+	0	+	+	0	1	0	+	+	+	+	0	+	+	0	0	0	0	
r'r"	9	0	+	+	+	+	0	0	+	0	+	0	+	0	+	+	0	0	+	+	0	+	0	F	0	+	+	0	0	0	;
rr	10	0	0	+	0	+	0	0	+	0	+	0	+	①	0	+	+	0	+	+	+	0	+	0	0	+	+	0	0	3+	
R₁r	11	+	+	+	0	+	0	0	+	0	+	0	+	①	+	0	+	0	+	+	+	+	+	+	0	+	+	0	0	2+	
	Patient Cells																											0	0	0	

Harmening, DM. Modern Blood Banking and Transfusion Practices 7th Ed.

If an antibody is detected, corresponding antigen negative units must be provided

(+) Ab ID ≠ clinically significant hemolysis


BUT....we treat any potentially clinically significant antibody as if it will induce hemolysis and give <u>antigen negative units</u>


Historical Antibodies

Historical antibodies are always honored independent of whether

screen is currently positive or NEGATIVE

Fasano RM et al (2019) Transfusion Clinique et Biologique

AABB Technical Manual 20th Ed

Serologic Testing Overview

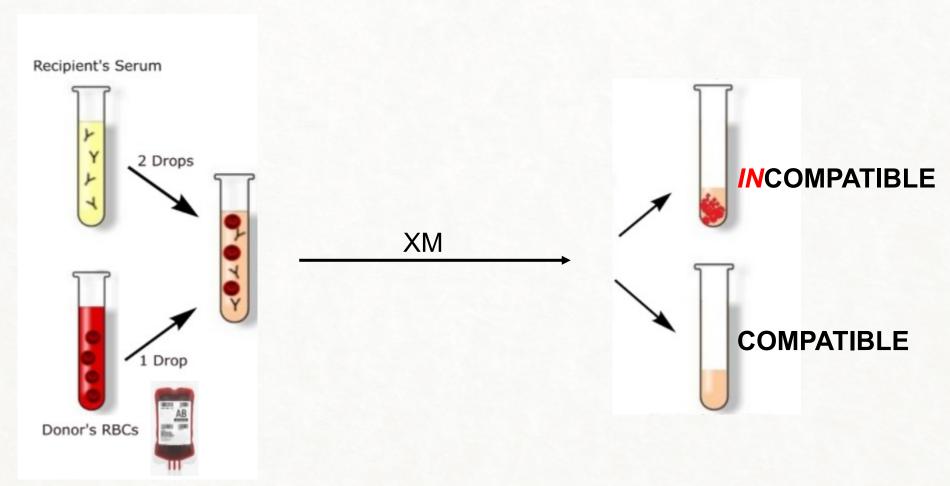

Collect/labeling specimen

ABO and Rh Type

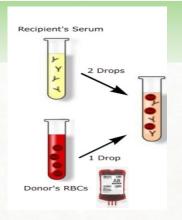
Antibody Screen

Antibody ID

Select units and crossmatch



Release unit


IV. Crossmatch

Modified from https://laboratorytests.org/cross-matching/

April 14, 2022

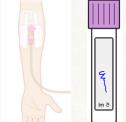
Types of Crossmatch

Type of XM	When is it used?	Description
Immediate Spin (IS)	(-) Ab screen No history of prior (+) screen	Pt plasma + Donor RBC • Agglutination seen at IS • Detects ABO incompatibility Spin
IAT ("Full XM" or "Coombs crossmatch")	(+) Ab screen History of (+) screen	Pt plasma + Donor RBC Incubate at 37 C, wash, AHG used ("bridging") Detects IgG
Electronic XM	(-) Ab screenNo history of prior (+) screen2 ABO/Rh types on recordComputer software validated	Computer checks ABO compatibility of patient and donor • No physical testing

Timeline for RBC availability

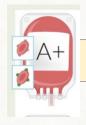
AVAILABLE TIME	COMPONENT AVAILABLE	RISKS/COMMENTS
5 minutes or less	Type O uncrossmatched Rh??????	0.2-2% of population has RBC antibodies
45 minutes	Type Specific crossmatched (if antibody screen negative)	Standard Procedure
90 minutes to ???	Type Specific crossmatched in a patient with a positive screen	If blood is needed before resolution, high risk – EMERGENCY RELEASE. Please clearly communicate urgency w/ BB!

Serologic Testing Overview


Collect/labeling specimen

ABO and Rh Type

Antibody Screen



Antibody ID

Select units and crossmatch

Release unit

Slide 39

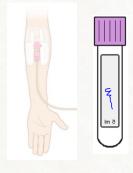
Pan-reactive antibody panel

Donor	Cell number	D	С	С	Е	е	Cw	ĸ	k	Кр ^а	Κp ^b	Js ^a	Js ^b	Fy ^a	Fyb	Jk ^a	Jk ^b	Le ^a	Le ^b	Pı	М	N	s	s	Lu ^a	Lub	Xg ^a	Peg IgG
R1R1	1	+	+	0	0	+	0	0	+	0	+	0	+	+	0	+	+	+	0	+	+	+	+	+	0	+	+	2+
R1wR1	2	+	+	0	0	+	+	+	+	0	+	0	+	+	+	0	+	0	+	+	+	0	+	+	0	+	+	3+
R2R2	3	+	0	+	+	0	0	0	+	0	+	0	+	0	+	0	+	0	+	+	+	+	+	0	0	+	+	2+
R0r	4	+	0	+	0	+	0	0	+	0	+	0	+	0	0	+	+	0	+	+	+	0	+	0	0	+	0	2+
r'r	5	0	+	+	0	+	0	0	+	0	+	0	+	+	0	+	0	0	0	0	0	+	0	+	0	+	0	2+
r"r	6	0	0	+	+	+	0	+	+	0	+	0	+	+	+	+	+	0	+	+	+	+	+	+	0	+	+	3+
n	7	0	0	+	0	+	0	0	+	0	+	0	+	+	+	+	+	+	0	0	+	+	0	+	0	+	+	2+
rr	8	0	0	+	0	+	0	0	+	0	+	0	+	0	+	0	+	0	+	+	+	0	0	+	0	+	+	2+
rr	9	0	0	+	0	+	0	0	+	0	+	0	+	0	+	+	0	0	+	0	+	+	+	+	0	+	0	2+
n	10	0	0	+	0	+	0	+	+	0	+	0	+	0	+	+	+	0	+	+	0	+	0	+	0	+	+	3+
R0r	11	+	0	+	0	+	0	0	+	0	+	0	+	+	+	0	+	0	+	+	0	+	0	+	0	+	+	2+
	Patient Cells																											2+

- Alloantibody to High Frequency Antigen
- Autoantibody
- Multiple Alloantibodies
- Daratumumab (anti-CD38)

Harmening, DM. Modern Blood Banking and Transfusion Practices 7th Ed.

Additional techniques in the toolbox


Collect/labeling specimen

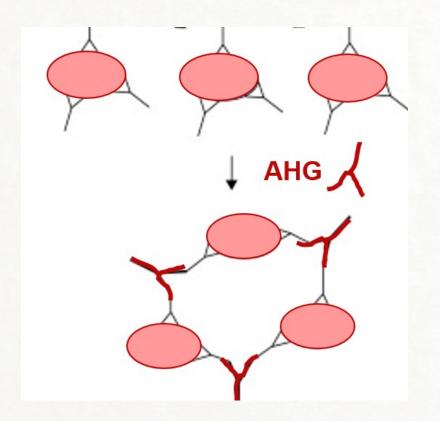
ABO and Rh Type

Antibody Screen

Antibody ID

Select units and crossmatch

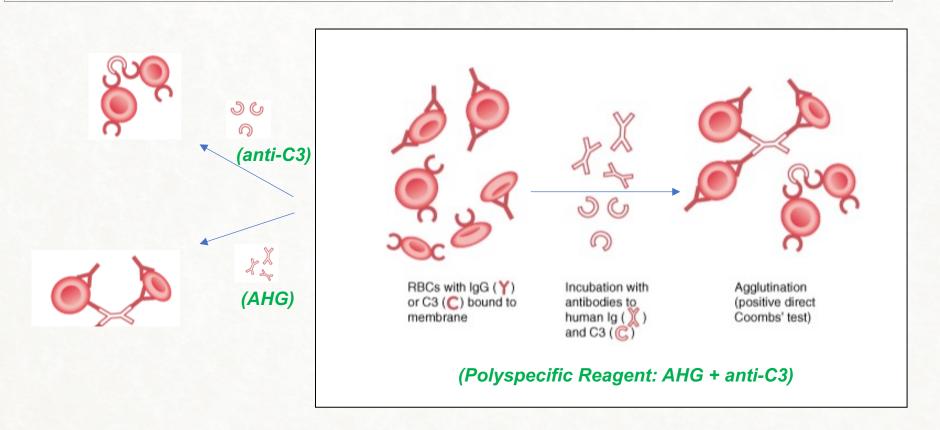
- Direct Antiglobulin Test (DAT)
- Elution
- Adsorption
- Pheno/Genotyping


Release unit

HematologyEducationOnline

Slide 41

Positive autocontrol: autoantibody?


Donor	Cell number	D	С	С	Е	е	Cw	ĸ	k	Kp ^a	Кр ^b	Js ^a	Js ^b	Fy ^a	Fyb	Jk ^a	Jk ^b	Le ^a	Le ^b	P ₁	М	N	s	s	Lu ^a	Lub	Xgª	Peg/ lgG
R1R1	1	+	+	0	0	+	0	0	+	0	+	0	+	+	0	+	+	+	0	+	+	+	+	+	0	+	+	2+
R1wR1	2	+	+	0	0	+	+	+	+	0	+	0	+	+	+	0	+	0	+	+	+	0	+	+	0	+	+	3+
R2R2	3	+	0	+	+	0	0	0	+	0	+	0	+	0	+	0	+	0	+	+	+	+	+	0	0	+	+	2+
R0r	4	+	0	+	0	+	0	0	+	0	+	0	+	0	0	+	+	0	+	+	+	0	+	0	0	+	0	2+
rir	5	0	+	+	0	+	0	0	+	0	+	0	+	+	0	+	0	0	0	0	0	+	0	+	0	+	0	2+
r'r	6	0	0	+	+	+	0	+	+	0	+	0	+	+	+	+	+	0	+	+	+	+	+	+	0	+	+	3+
rr	7	0	0	+	0	+	0	0	+	0	+	0	+	+	+	+	+	+	0	0	+	+	0	+	0	+	+	2+
rr	8	0	0	+	0	+	0	0	+	0	+	0	+	0	+	0	+	0	+	+	+	0	0	+	0	+	+	2+
rr	9	0	0	+	0	+	0	0	+	0	+	0	+	0	+	+	0	0	+	0	+	+	+	+	0	+	0	2+
rr	10	0	0	+	0	+	0	+	+	0	+	0	+	0	+	+	+	0	+	+	0	+	0	+	0	+	+	3+
R0r	11	+	0	+	0	+	0	0	+	0	+	0	+	+	+	0	+	0	+	+	0	+	0	+	0	+	+	2+
	Patient Cells																											2+

DAT: what is coating the RBCs?

In-Vivo antibody coating

Positive DAT = IgG or Complement (C3) is present on the patient's RBCs

IgG reactivity often correlating with a warm-reactive antibody/extravascular hemolysis C3 reactivity typically correlating with a cold-reactive antibody (IgM)/intravascular hemolysis

(+) DAT

0.1% healthy blood donors, up to 15% hospitalized pts without evidence of hemolysis

Other causes of a + DAT

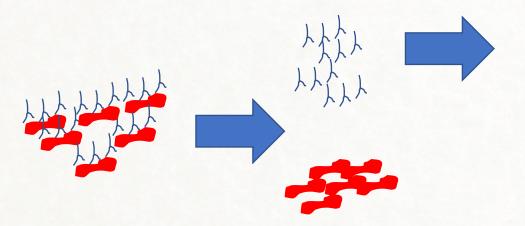
Drugs – therapeutic monoclonals

Nonspecifically adsorbed proteins - polyclonal hypergammaglobulinemia,

IVIG, drugs, rhogam

Severe rouleaux

Drug-induced abs


Complement activation due to infections

Passively transferred Abs – passenger lymphocyte syndrome

Antibody Elution

DAT is positive, how can we figure out what Ab is coating the RBCs?

Determine the specificity of the

Donor	Cell number	D	С	С	Е	е	Cw	к	k	Kpª	Кр ^b	Jsª	Js ^b	Fyª	Fy ^b	Jk ^a	Jk ^b	Leª	Le ^b	P ₁	М	N	S	s	Lua	Lub	Xgª	IS	37	AHG	СС
R₁r	1	+	+	+	0	+	0	0	+	0	+	0	+	+	+	+	+	0	+	+	+	+	+	+	0	+	+	Г			
R ₁ R ₁	2	+	+	0	0	+	+	+	+	0	+	0	+	0	+	+	0	0	0	+	+	0	+	0	0	+	+				
R ₂ R ₂	3	+	0	+	+	0	0	0	+	0	+	0	+	+	0	0	+	0	+	+	0	+	0	+	0	+	+				
R ₀ r	4	+	0	+	0	+	0	0	+	0	+	0	+	+	0	+	+	+	0	0	+	0	+	+	0	+	0				
r'r	5	0	+	+	0	+	0	0	+	0	+	0	+	0	0	0	+	0	+	+	+	0	+	+	0	+	0				
r"r	6	0	0	+	+	+	0	0	+	0	+	0	+	+	+	0	+	0	+	+	0	+	0	+	0	+	+				
rr K	7	0	0	+	0	+	0	+	+	0	+	0	+	+	+	+	+	0	+	0	+	+	0	+	0	+	+				
rr	8	0	0	+	0	+	0	0	+	0	+	0	+	0	+	+	0	+	0	+	+	+	+	0	+	+	0				
r'r"	9	0	+	+	+	+	0	0	+	0	+	0	+	0	+	+	0	0	+	+	0	+	0	+	0	+	+				
rr	10	0	0	+	0	+	0	0	+	0	+	0	+	+	0	+	+	0	+	+	+	0	+	0	0	+	+				
R ₁ r	11	+	+	+	0	+	0	0	+	0	+	0	+	+	+	0	+	0	+	+	+	+	+	+	0	+	+				
	Patient Cells																														

Run on test

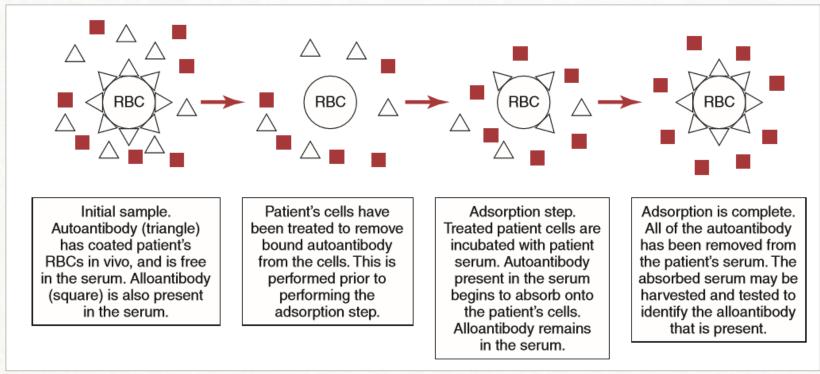
Cause of Positive DAT	Eluate Reactivity
Transfusion Reaction (DHTR/DSTR)	Alloantibody pattern (specific)
HDFN	
Warm Autoantibody	Panagglutanin
Drug-induced Antibody	Usually Negative

Note: elution studies are most useful for IgG-positive DATs. C3-positive DATs are frequently associated with IgM antibodies (although some IgGs can fix complement); such antibodies are poorly eluted from RBCs and few reagents exist to detect bound IgM

Summary of serologic findings in AIHA

TABLE 17-4. Typical Serologic Findings in Autoimmune Hemolytic Anemia

	WAIHA	CAS	Mixed-type AIHA	PCH
DAT (routine)	IgG IgG + C3 C3	C3 only	IgG + C3 C3	C3 only
Immunoglobulin type	IgG	IgM	IgG, IgM	IgG
Eluate	IgG antibody	Nonreactive	IgG antibody	Nonreactive
Serum	IAT; 35% agglutinate untreated red cells at 20 C	IgM agglutinating antibody; titer ≥1000 (60%) at 4 C; react at ≥30 C	IgG IAT-reactive antibody plus IgM agglutinating antibody react at ≥30 C	Routine IAT negative; IgG biphasic hemolysin in Donath-Landsteiner test
Specificity	Broadly reactive; multiple spec- ificities reported	Usually anti-I	Usually unclear	Anti-P


AABB Technical Manual 18th Edition

Adsorptions: removing *auto-*antibodies to detect underlying *allo-*antibodies

Autoadsorption

- uses patient's own RBCs to adsorb out the autoantibody in the serum
- In patients not transfused within previous 3 months

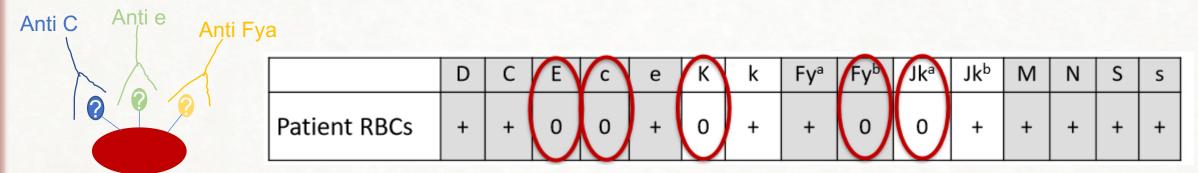
Harmening, DM. Modern Blood Banking and Transfusion Practices 7th Ed.

~30% patients with autos will also have allos (Branch Dr and Petz LD. Transfusion 1999)

Alloantibodies may become apparent after autoadsorption

Donor	Cell number	D	С	С	Ε	е	Cw	ĸ	k	Кр ^а	Κp ^b	Js ^a	Js ^b	Fy ^a	Fyb	Jk ^a	Jk ^b	Le ^a	Le ^b	Pı	М	N	s	s	Lu ^a	Lub	Xgª	Peg/ IgG	СС	Absorbed serum	СС
R1R1	1	+	+	0	0	+	0	0	+	0	+	0	+	+	0	+	+	+	0	+	+	+	+	+	0	+	+	2+		0	3+
R1wR1	2	+	+	0	0	+	+(+	0	+	0	+	+	+	0	+	0	+	+	+	0	+	+	0	+	+	3+		(2)	
R2R2	3	+	0	+	+	0	0	0	+	0	+	0	+	0	+	0	+	0	+	+	+	+	+	0	0	+	+	2+		0	3+
R0r	4	+	0	+	0	+	0	0	+	0	+	0	+	0	0	+	+	0	+	+	+	0	+	0	0	+	0	2+		0	3+
r'n	5	0	+	+	0	+	0	0	+	0	+	0	+	+	0	+	0	0	0	0	0	+	0	+	0	+	0	2+		0	3+
r'r	6	0	0	+	+	+	0	\odot	+	0	+	0	+	+	+	+	+	0	+	+	+	+	+	+	0	+	+	3+		2+	
rr	7	0	0	+	0	+	0	0	+	0	+	0	+	+	+	+	+	+	0	0	+	+	0	+	0	+	+	2+		0	3+
n	8	0	0	+	0	+	0	0	+	0	+	0	+	0	+	0	+	0	+	+	+	0	0	+	0	+	+	2+		0	3+
rr	9	0	0	+	0	+	0	0	+	0	+	0	+	0	+	+	0	0	+	0	+	+	+	+	0	+	0	2+		0	3+
rr	10	0	0	+	0	+	0	$\overline{\oplus}$	+	0	+	0	+	0	+	+	+	0	+	+	0	+	0	+	0	+	+	3+		2+	
R0r	11	+	0	+	0	+	0	0	+	0	+	0	+	+	+	0	+	0	+	+	0	+	0	+	0	+	+	2+		0	3+
	Patient Cells																											2+			

Harmening, DM. Modern Blood Banking and Transfusion Practices 7th Ed.



Phenotyping patient RBCs

Patient is <u>not</u> expected to produce an alloantibody to an antigen present on their own RBCs

Determining the RBC antigen expression profile on patient RBCs:

- · What antigens are present on patient cells?
- What antigens are missing? → antibodies are they at risk for producing

At risk for: Anti-E, anti-C, anti-K, anti-Fyb, anti-Jka

- · Phenotypically matched units can be provided in certain clinical situations
- Helpful for serologic workup

Phenotyping Limitations

Serologic phenotype may be unreliable:

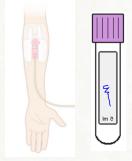
- Recent transfusion
- HSCT
- Positive DAT (antibody must first be removed)

Genotyping:

- Used to predict phenotype
- Not available as STAT
- HEA (human erythrocyte antigen) panel
 Extended typing 35 antigen profile

Blood Group	Red Blood Cell Antigens
Rh	C (RH2), c (RH4), E (RH3), e (RH5), V (RH10), VS (RH20)
Kell	K (KEL1), k (KEL2), Kpa (KEL3), Kpb (KEL4), Jsa (KEL6), Jsb (KEL7)
Duffy	Fya (FY1), Fyb (FY2), GATA (FY-2), Fyx (FY2W)
Kidd	Jka (JK1), Jkb (JK2)
MNS	M (MNS1), N (MNS2), S (MNS3), s (MNS4), Uvar (MNS-3,5W), Uneg (MNS-3,-4,-5)
Lutheran	Lua (LU1), Lub (LU2)
Dombrock	Doa (DO1), Dob (DO2), Hy (DO4), Joa (DO5)
Landsteiner-Wiener	LWa (LW5), LWb (LW7)
Diego	Dia (DI1), Dib (DI2)
Colton	Coa (CO1),Cob (CO2)
Scianna	Sc1(SC1), Sc2 (SC2)

Serologic Testing Overview


Collect/labeling specimen

ABO and Rh Type

Antibody Screen

Antibody ID

Select units and crossmatch

Additional Testing
DAT
Elution
Adsorption
Pheno/Genotyping

Release unit

Slide 51

