Hemophilia

Catherine McGuinn, MD Weill Cornell Medicine

Contributions: Hanny Al-Samkari MD, Sven Olson MD and Peter Kouides, MD

HematologyEducationOnline Slide 1

Disclosures

> Research support: (Last 24 Months) Biogen/Sanofi, Roche/Genentech, Spark, Pfizer, Takeda/Shire

Medical Advisory Board (Last 24 months) Genentech, CSL, Octapharma

> I will be discussing off-label use of medications

Objectives

> Accurately recognize the inheritance pattern, clinical presentation and laboratory evaluation for Hemophilia

- > Understand the risks and benefits of clotting factor administration for the treatment
- > Describe 3 approaches to improve the prevention of bleeding events in patients with Hemophilia

Patient 1

>8 day old male with swollen thigh

- >NSVD Delivery
- > Vitamin K IM
- > NYS Newborn Screen via Heelstick with Oozing
- > Right Thigh Swelling s/p Hep B Vaccination

Slide 4

Patient 1

>8 day old male with swollen thigh

- >NSVD Delivery
- > Vitamin K IM
- > NYS Newborn Screen via Heelstick with Oozing
- > Right Thigh Swelling s/p Hep B Vaccination

Family History: Maternal Uncle previously followed at HTC Deceased @ 30 year of age from HIV Lymphoma

HematologyEducationOnline

Slide 5

Patient 1

- 8 day old male with swollen thigh
 - > NSVD Delivery
 - Vitamin K IM
 - > NYS Newborn Screen via
 - Heelstick with Oozing
 - Right Thigh Swelling s/p Hep B Vaccination

PT: 13.0 secsaPTT: 110 secs

HematologyEducationOnline Slide 7

FVIII <1%
FIX 45%
FXI 58%

HematologyEducationOnline

Slide 8

FVIII <1%
FIX 45%
FXI 58%
VWF Antigen: 199 %
VWF Risto Co Factor: 200%

Questions

> What is your threshold for treatment ?
> What medication/dose ?
> What side effects are you concerned about ?
> When would you start prophylaxis ?
> Costs/Risks vs Benefits

History of Hemophilia

The Royal Disease

Rogaaev et al. Hemophilia (2009) www.sciencemag.org (State Archived of Russian Federation) www.scientificanemrica.com

Hemophilia A/B are X-linked disorders

HematologyEducationOnline

Slide 13

1/3 of patients with hemophilia with no family history

>30% of cases have NO family history

* Advanced Paternal Age Hypothesis

Rossiter et al. Hum. Mol. Gen. 1994, Carcao, M. Unpublished Wolf and Lassila, 2019, Haemophilia

HematologyEducationOnline Slide 14

Women Can Have Hemophilia

- > Lyonization of the normal X chromosome
- > Turner syndrome (XO)
- > Father with hemophilia / mom as a carrier

vWD type 2N (Normandy) *

HEMOPHILIA IS FOR GIRLS TOO.*

WWW.HEMAWARE.ORG/WOMEN

* Von Willebrand Disease

Intron 22 inversion is the most common mutation

HematologyEducationOnline

Slide 16

F9 Gene Mutations

> Missense (47%)
> Nonsense (24%)
> Frameshift (10%)
> Splice Site (6%)

Johnsen, J et al. Blood Advances (2017)

HematologyEducationOnline

Slide 17

Prenatal and Genetic Counseling

>Ultrasound
>CVS / Amniocentesis
>Free Fetal DNA (Future State)
>Pre-Implantation Genetic Diagnosis
>Mode of Delivery

HematologyEducationOnline

Slide 18

Tsui N B Y et al. Blood 2011;117:3684-3691

October 3

Mode of Delivery

Planned Mode of Delivery	ICH	Risk
Vaginal	17/688	2.5%
SpontaneousInstrumentedC/S after labor	8/541 7/68 2/79	1.5% 10.2% 2.5%
Cesarean	2/125	1.6%

No fetal electrodes
No FORCEPS
No VACCUM
Avoid HEELSTICK
No IM Injection
Cord Blood Sample

Anderson et al. Hematologica (2019)

HematologyEducationOnline Slide 19

Hemophilia Presentation

http://www.cdc.gov/ncbddd/hemophilia/data.html

HematologyEducationOnline Slide 20

Hemophilia patients have poor thrombin generation

Laboratory classification of severity

Joint disease progression in hemophilia

Healthy knee

The bleed starts to enter the joint. The joint swells. It may become so large that it's called "cantaloupe knee." Swelling of tissues In the knee may become permanent. Over time, this can lead to wearing away of the bone. Permanent damage results in a destroyed joint.

http://www.hemophilia.in/

HematologyEducationOnline Slide 24

Stop the bleeding!!

- >High Priority @ Triage
- ≻Treat first → Diagnostic testing later
- >Treat based on history even in the absence of physical signs
- Patients often bring their clotting factor with them

GUIDELINES FOR EMERGENCY MANAGEMENT OF HEMOPHILIA AND VON WILLEBRAND DISEASE

FactorFirst

Canadian Hemophilia Society Help Stop the Bleeding

Association of Hemophilia Clinic Directors of Canada

www.hemophilia.ca/emergency

Factor Replacement

HematologyEducationOnline Slide 26

High Risk Hemorrhage

Srivastava et al. WHF Guidelines for the Management of Hemophilia 3rd Ed., 2020

HematologyEducationOnline

Slide 27

Anti-Fibrinolytic Therapy

Slide 28

 > Aminocaproic Acid 50- 100mg/kg q6
 > Tranexamic Acid 10-20mg/kg q 8 IV 1300mg po q8 PO

Mucosal BleedingAdjunctive Therapy

Relker, N. et al. RPTH (2021)

HematologyEducationOnline

Advance in safe, effective, home based therapy for hemophilia

Infectious Complications

> Hepatitis A

Hepatitis B

≻ Hepatitis C

≻HIV

https://www.hemophiliafed.org/news-stories/2014/03/1980s-hemophilia-hivaids-hepatitis-c/

HematologyEducationOnline

Slide 30

HIV Infection impact of hemophilia population

Jones and Ratnoff, 1991 http://www.niaid.nih.gov/topics/hivaids.

HematologyEducationOnline Slide 31

Treatment- On Demand

Joint Outcome Study: Prophylaxis Randomized Control Trial

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

AUGUST 9, 2007

VOL. 357 NO. 6

Prophylaxis versus Episodic Treatment to Prevent Joint Disease in Boys with Severe Hemophilia

Marilyn J. Manco-Johnson, M.D., Thomas C. Abshire, M.D., Amy D. Shapiro, M.D., Brenda Riske, M.S., M.B.A., M.P.A., Michele R. Hacker, Sc.D., Ray Kilcoyne, M.D., J. David Ingram, M.D., Michael L. Manco-Johnson, M.D., Sharon Funk, B.Sc., P.T., Linda Jacobson, B.S., Leonard A. Valentino, M.D., W. Keith Hoots, M.D., George R. Buchanan, M.D., Donna DiMichele, M.D., Michael Recht, M.D., Ph.D., Deborah Brown, M.D., Cindy Leissinger, M.D., Shirley Bleak, M.S.N., Alan Cohen, M.D., Prasad Mathew, M.D., Alison Matsunaga, M.D., Desiree Medeiros, M.D., Diane Nugent, M.D., Gregory A. Thomas, M.D., Alexis A. Thompson, M.D., Kevin McRedmond, M.D., J. Michael Soucie, Ph.D., Harlan Austin, Ph.D., and Bruce L. Evatt, M.D.

Manco-Johnson et al. NEJM (2007)

October 3, 2024

HematologyEducationOnline

Slide 33

Prophylaxis prevents hemarthrosis

Table 2. Outcome Data.*				
Variable	Prophylaxis (N = 32)	Enhanced Episodic Therapy (N = 33)	P Value	
Mean	653±246	187±100	<0.001	
Total	20,896	6,176		
Reported no. of factor VIII units infused				
Mean	352,793±150,454	113,237±65,494	<0.001	
Total	11,289,372	3,736,807		
Joint hemorrhages (no./participant/yr)				
Mean	0.63±1.35	4.89±3.57	<0.001	
Median	0.20	4.35		
Total hemorrhages (no./participant/yr)				
Mean	3.27±6.24	17.69±9.25	<0.001	
Median	1.15	17.13		

* Plus-minus values are means ±SD. The data on MRI and radiographic findings include interim-analysis data for children who were removed from the study because of early joint failure.

Manco-Johnson et al. NEJM (2007)

HematologyEducationOnline Slide 34

Weak correlation of clinical bleeding with MRI joint damage

Figure 2. MRI Score for Index Joint According to the Number of Hemorrhages in That Joint for Both Treatment Groups.

Manco-Johnson et al. NEJM (2007)

HematologyEducationOnline

Slide 35

Time Below 1% $\rightarrow \uparrow$ Risk of Bleeding

> Collins PW, et al J Thromb Haemost. 2009;7(3):413–420.³³ Copyright © International Society on Thrombosis and Haemostasis
Treatment- Prophylaxis

What is the ideal Target for Prophylaxis ?

Haemophilia

<u>Volume 17, Issue 6, pages 849-853, 5 MAY 2011 DOI: 10.1111/j.1365-2516.2011.02539.x</u> <u>http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2516.2011.02539.x/full#f2</u>

Decision Making

Adherence

Oldenberg, J. Blood 2015

Personalized prophylaxis

Haemophilia pages 131-135, 25 JUN 2012 DOI: 10.1111/j.1365-2516.2012.02838.x http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2516.2012.02838.x/full#f2

Long Acting Agents for Hemophilia

Efaefanesoctocog (rFVII Fc-VWF-XTEN) Extended Half Life T_{1/2} = 42.5 hours

Konkle et al. NEJM 2020

von Drygalski A et al. NJEM 2023

HematologyEducationOnline Slide 44

Inhibitors – <u>Allo</u>antibody

- > 25 30% in severe Hemophilia A
- > 3%-10% in Hemophilia B FVIII > *~ 25% with allergic reaction phenotype

- > Poor Control of Bleeding
- > High Cost, Morbidity and Mortality

Jardim LL, et al, *Res Pract Thromb Haemost (2020)* Katz et al. *Haemophilia* 1996;2:28–31. Male et al Haematologica (2020)

Inhibitors

>High-titer inhibitor: >5 BU

Low-titer inhibitor: <5 BU</p>

Transient inhibitor:
 Persists for 6-8 months or less
 Usually low titer

Jardim LL, et al, Res Pract Thromb Haemost (2020)

Peyvandi and Garagiola, Res Pract Thromb Haemost (2018)

Inhibitors develop with median of 14.5 exposure days.

HematologyEducationOnline

SIPPET STUDY (Survey of Inhibitors in Plasma-Product Exposed Toddlers)

Immunogenicity of Inhibitors

Table 2. Characteristics of standard half-life (SHL) recombinant factor VIII products currently used for hemophilia A treatment.

Product (Brand)	Company	Year of First Licensing	rFVIII Generation	Cell Line	Stabilizer	FVIII	Half-Life (Hours)	Immunogenicity PTPs (%)	Immunogenicity PUPs (%)	Ref.
Octocog alfa (Recombinate)	Takeda	1992	First	СНО	Human albumin	full-length	15	0.12 All inhibitors 0.06 HT inhibitors	23.9 All inhibitors 11.3 HT Inhibitors	[44-46]
Octocog alfa (Kogenate FS)	Bayer	1993	Second	ВНК	Sucrose	full-length	11	No inhibitors	15–50.1 All inhibitors 9.8–31.6 HT inhibitor	[9,23,47]
Octocog alfa (Advate)	Takeda	2003	Third	СНО	Trehalose	full-length	9–12	0.92 All inhibitors	29.1–38 All inhibitors 12.7–26 HT inhibitors	[48–50]
Moroctocog alfa (Xyntha/ ReFacto AF)	Pfizer	2008	Third	СНО	Sucrose	B-domain deleted	8–11	1.47 All inhibitors	33 All inhibitors 14.5 HT inhibitors	[51,52]
Turoctocog alfa (Novoeight)	Novo Nordisk	2013	Third	СНО	Sucrose	B-domain truncated	11	No inhibitors	43.1 All inhibitors 27.6 HT inhibitors	[53,54]
Simoctocog alfa (Nuwiq)	Octapharma	2015	Fourth	HEK	Sucrose/ arginine	full-length	12–17	No inhibitors	26.7 All inhibitors 16.2 HT inhibitors	[36,55]
Octogog alfa (Kovaltry)	Bayer	2016	Third	ВНК	Sucrose	full-length	12.2–14.2	0.93 All inhibitors	54.8 All inhibitors 40.5 HT inhibitors *	[56,57]
Lonoctocog alfa (Afstyla)	CSL Behring	2016	Third	СНО	Sucrose/ L-histidine,	B-domain truncated single chain	14.5	No inhibitors	52 All inhibitors 26 HT inhibitors **	[58]
Product (Brand)	Company	Year of First Licensing	Techno	logy	Cell Line	FVIII	Half-Life (Hours)	Immunogenicity PTPs (%)	Immunogenicity PUPs (%)	Ref.
Efmoroctocog alfa (Elocta, Eloctate)	Sanofi	2014	IgG1-Fc-I	fusion	HEK	B-domain deleted	19 (OSA) 20.9 (CSA)	No inhibitor No anaphylaxis	31.1 All inhibitors 15.6 HT inhibitors No anaphylaxis	[66,67,77,78]
Rurioctocog alfa pego (Adynovi, Adynovate	l Takeda)	2015	Rando PEGyla	om tion	СНО	full-length	14.3–16 (OSA)	No inhibitor No anaphylaxis	19.2 All inhibitors	[63,73,79]
Damoctocog alfa pego (JIVI)	l Bayer	2018	Site-spe PEGyla	ecific tion	внк	B-domain deleted	19 (OSA) (>12 yo) 15–16 (OSA) (<12 yo)	No inhibitor 1.5 hypersensibility 3.7 anti-PEG Ab	NA	[64,72]
Turoctocog alfa pegol (N8-GP, Esperoct)	Novo Nordis	k 2019	Site-spe glycoPEG	ecific ylation	СНО	B-domain truncated	15.8–19.9 (CSA) (>12 yo) 13.2–14.2 (CSA) (<12 yo)	0.6 All inhibitors 12.3 anti-PEG Ab (>12 yo) 29.4 anti-PEG Ab (<12 yo)	29.9 All inhibitors 14.9 HT inhibitors No anaphylaxis	[65,71,80]
	PTPs pre	wiously treated nat	tionte PI IPe nr	aviouely un	treated nationts.]	FVIII factor VIII	CHO Chinese ham	ster overv cell line BHK	less have at an hit day one wall hit	HEK humar

PTPs, previously treated patients; PUPs, previously untreated patients; PVIII, factor VIII; CHO, Chinese hamster ovary cell line, BHK, embryonic kidney; OSA, one-stage clotting assay; CSA, chromogenic substrate assay; Ab, antibody; NA, not available; Ref., references.

HematologyEducationOnline

Slide 50

Prezotti ANL, et al Pharmaceuticals (Basel). 2022 PMCID: PMC9331070. October 3, 2024

Inhibitor Treatment Options

HematologyEducationOnline Slide 51

Rethink the approach

Mechanisms of novel hemophilia therapies. (A) Normal hemostatic balance tipped in favor of bleeding, for example, (B) in hemophilia A from lack of coagulation FVIII. (C) One approach to improve hemostatic balance in hemophilia is to add additional procoagulants; (D) another approach is to remove or inhibit anticoagulants. Adapted from Willyard. 64

Callaghan et al. Blood Advances (2018)

HematologyEducationOnline

Slide 52

Non Factor Therapy

- > Emicizumab (ACE-910)
- >Humanized Bispecific Antibody
- >Half Life ~ 3 weeks
- > No structural homology to FVIII
- Hemophilia A with and without inhibitors
- >Subcuatneous

HematologyEducationOnline

Slide 53

October 3, 2024

Makris, Blood (2016)

Steady State Prevention of Bleeding

Yoneyama et al. Clinical Pharmacokinetics (2018)

HAVEN-1:

Adult Inhibitor Patients

Decrease Bleeding vs Prophylaxis HAVEN 3 (Non-Inhibitor Patients)

 Table 2. Treated Bleeding Events in Participants Receiving Emicizumab Prophylaxis (Group D), as Compared with

 Events in the Same Participants during Prophylactic Factor VIII Treatment Previously in the Noninterventional Study.*

Variable	Group D in Current Trial: Emicizumab Prophylaxis (N=48)	Noninterventional Study: Factor VIII Prophylaxis (N = 48)
Median duration of efficacy period (range) — wk†	33.7 (20.1–48.6)	30.1 (5.0-45.1)
Annualized rate of bleeding events, model-based (95% CI)‡	1.5 (1.0–2.3)	4.8 (3.2–7.1)
Rate ratio vs. control (95% CI)	0.32 (0.20-0.51)	_
Percent difference vs. control	–68∬	_
Median annualized rate of bleeding events (IQR)	0.0 (0.0–2.1)	1.8 (0.0–7.6)
Percent of participants with 0 bleeding events (95% CI)	54 (39–69)	40 (26–55)
Percent of participants with 0–3 bleeding events (95% CI)	92 (80–98)	73 (58–85)

Emicizumab Clinical Data

Study,	Study design	Study population	Dosing	Main results		
year ^{rer}				Efficacy	Safety	
HAVEN 1, 2017 ²⁶	Phase III randomised open-label	109 (adolescent and adult haemophilia A with inhibitors)	Loading dose: 3 mg/kg/week for 4 weeks Maintenance dose: 1.5 mg/kg/week	Emicizumab prophylaxis vs no prophylaxis resulted in an 87% reduction of ABR	5 SAEs (3 thrombotic microangiopathies and 2 thromboses)	
HAVEN 2, 2017 ²⁷	Phase III non-randomised open-label	60 (paediatric haemophilia A with inhibitors)	Loading dose: 3 mg/kg/week for 4 weeks Maintenance dose: 1.5 mg/kg/week, or 3 mg/kg every 2 weeks, or 6 mg/kg every 4 weeks	Emicizumab prophylaxis vs no prophylaxis resulted in a 99% reduction of ABR	No thrombotic events	
HAVEN 3, 2018 ²⁸	Phase III randomised open-label	152 (adolescent and adult haemophilia A without inhibitors)	Loading dose: 3 mg/kg/week for 4 weeks Maintenance dose: 1.5 mg/kg/week, or 3 mg/kg every 2 weeks	96% and 97% reduction in ABR in the two emicizumab arms, respectively, compared to episodic FVIII therapy	No major safety issues	
HAVEN 4, 2017 ²⁹	Phase III non-randomised open-label	48 (adolescent and adult haemophilia A with or without inhibitors)	Loading dose: 3 mg/kg/week for 4 weeks Maintenance dose: 6 mg/kg every 4 weeks	Efficacy results similar to HAVEN 1, 2, and 3	No major safety issues	

ABR: annualised bleeding rate; SAEs: serious adverse events; FVIII: exogenous factor VIII.

Pediatric Emicizumab Clinical Data

	HAVEN2 ³²	HAVEN2 ³²	HAVEN2 ³²	Barg et al. ³⁷	Catarino et al. ³⁸	Batsuli et al. ⁴⁷	HOHOEMI ³³	HOHOEMI ³³
	QW	Q2W	Q4W	QW	QW	QW/ Q2W	Q2W	Q4W
Patients, n	68	10	10	П	7		6	7
FVIII-inhibitors	Yes	Yes	Yes	Yes	Yes	Yes	No	No
Current ITI	No	No	No	No	No	Yes	No	No
Median age	6 years	8 years	9 years	26 months	(3 months -	2 years	6.6 years	4.1 years
(range)	(1–15)	(2–10)	(2–11)	(2–80)	27 years)	(1.7–12)	(1.5–10.7)	(0.3–8.1)
Median follow-	57.6 weeks	21.3 weeks	19.9 weeks	36 weeks	(3–13	35 weeks	39.9 weeks	34.1 weeks
up (range)	(17.9–92.6)	(18.6–24.1)	(8.9–24.1)	(22–58)	months)	(21–40)	(37.9–41.4)	(24.1–37.1)
Treated ABR*	0.3 (0.17; 0.5)	0.3 (0.0; 1.7)	2.2 (0.7; 6.8)	NA	NA	NA	1.3 (0.6; 2.9)	0.7 (0.2; 2.6)
(95% CI)								
% of zero	77	90	60	63	86	43	33	71
treated bleeds								

Notes: QW: 3 mg/kg/week loading dose and 1.5 mg/kg/week maintenance dose; Q2W: 3 mg/kg/week loading dose and 3 mg/kg every 2 weeks; Q4W: 3 mg/kg/week loading dose and 6 mg/kg every 4 weeks; *model-based ABR estimated by use of binomial regression model. Abbreviations: CI, confidence interval; NA, non applicable.

Le Quellec, S., 2020. Clinical Evidence and Safety Profile of Emicizumab for the Management of Children with Hemophilia A. Drug Design Development and Therapy.. doi:10.2147/dddt.s167731

Pediatric Data – HAVEN 7

	Emicizumab (N=54)
Participants with ≥1 AE, n (%) Total number of AEs, n Total number of deaths, n Withdrawal due to AE, n	50 (92.6) 314 0 0
Total number of participants with ≥1 AE with fatal outcome, n SAE*, n (%) [events]	0 8 (14.8) [12]
Related AE, n (%) [events]	9 (16.7) [23]
Grade ≥3 AE, n (%) [events]	12 (22.2) [16]
AEs of special interest, n Systemic hypersensitivity reactions and anaphylactic / anaphylactoid reactions TEs and hypercoagulation Microangiopathic haemolytic anaemia or TMA	0 0 0

Pipe et al. EHAD 2023 Pipe at al. ASH 2022

Emicizumab prophylaxis in infants with hemophilia A: HAVEN 7 primary analysis

Emicizumab was investigated for ≥52 weeks in participants ≤12 months of age with severe hemophilia A without factor VIII inhibitors

Median emicizumab treatment duration: **100.3 weeks** Median age at informed consent: 4.0 months

55

males

The annualized treated bleed rate was 0.4; all were traumatic 54.5% of participants (n=30) had zero treated bleeds

No intracranial hemorrhages occurred

No new safety signals were identified, and no anti-emicizumab antibodies developed

The primary analysis of HAVEN 7 indicates that emicizumab is efficacious and well tolerated in infants with severe hemophilia A without factor VIII inhibitors

HAVEN -7

No participant in HAVEN 7 had tested positive for ADAs at CCOD. This reflects the low immunogenicity rate for emicizumab reported in a pooled analysis of the phase 3 clinical trials HAVEN 1–5, HOHOEMI, and STASEY, across which 5.1% of participants developed ADAs, including 0.6% for whom ADAs were associated with a decrease in emicizumab exposure.[35] In HAVEN 7, 24 participants were tested for FVIII inhibitors following at least three EDs or two consecutive doses of FVIII; two participants (3.6% of the trial population; 8.3% of those tested), both PUPs, tested positive for confirmed *de novo* FVIII inhibitors. As approximately half of the trial population (28/55) received FVIII treatment on study (with a median of one ED), and only 24/55 were tested for FVIII inhibitors, many participants are still in the ED risk period for inhibitor development. The long-term follow-up will provide further data on the impact of emicizumab on rate and timing of FVIII inhibitor development.

New Challenges

Treatment of Acute Bleeding Events
 Surgical Procedures
 Risks of Inhibitor Development
 Role of Immune Tolerance Induction (ITI)

https://www.goodfreephotos.com/

HematologyEducationOnline

Slide 62

Antithrombin Modulation

Ragni, NEJM (2015)

HematologyEducationOnline Slide 63

Antithrombin ATLAS Trials - Fitsuran

Thrombin Generation with AT

Annual Bleeding Rate

HematologyEducationOnline

Slide 64 Pasi et al , JTH (2029) Prase 2026 Phase 2026

Concizumab: Explorer 7 trial

Median ABR (P25-P75)	HAwI Concizumab PPX (n=7	6)* HBwI Concizu	ımab PPX (n=51)*	NI 422	
Treated spontaneous and traumatic bleeding episodes	0.0 (0.0-3.7)	0.0 (0.0-3.3)		N=133	
				32 week follow up	
Estimated Mean ABR (95% CI)	HAwI No PPX (arm 1)	HAwI Concizumab PPX (arm 2)	HAwI ABR ratio (95% CI)	SC daily	
Treated spontaneous and traumatic bleeding episodes	18.3 (10.18-32.87)	1.6 (0.89-2.83)	0.09 (0.04-0.18) 91% reduction	Study paused and restarted after thrombotic events	
Estimated Mean ABR (95% CI)	HBwI No PPX (arm 1)	HBwI Concizumab PPX (arm 2)	HBwI ABR ratio (95% CI)	Dose adjustment at week 4. no further thrombotic	
Treated spontaneous and traumatic bleeding episodes	; 7.2 (2.61–20.06)	2.2 (0.76-6.52) 0.31 (0.07-1.36) 69% reduction		events recorded	

ABR, annualised bleeding rate; CI, confidence interval; HAwI, haemophilia A with inhibitors;

HBwI, haemophilia B with inhibitors; PPX, prophylaxis; SC, subcutaneous

1. Mathias et al. Oral presentation OR06 Presented at 16th Annual Congress of European

Association for Haemophilia and Allied Disorders 2023, 7–10 February 2023, Manchester.

2. Frei-Jones et al. *Blood* 2022;140(Supplement 1):466–468.

HematologyEducationOnline Slide 65

October 3, 2024

9

Gene Addition Therapy - Hemophilia

- Not Dominant Negative
- Molecular Characterization
- Animal Model
- Measurable biomarker
- Phenotype/Genotype Correlation
- Progressive Disease

HematologyEducationOnline

Slide 66

Rogersond Harzag) 24 ontier in Bioscience, (2015), George, L. Blood advances (2017)

Challenges with Gene Therapy

Neutralizing Antibodies
Immune Response
Dose Response
Durable Response
Genotoxicity
Integration ?
Dividing Hepatocytes ?

Long Term Risks ?

Adapted from Lindsey A. George Blood Adv 2017;1:2591-2599

HematologyEducationOnline

Slide 67

Hemophilia B Gene Therapy

> 10 patients
> Single AAV Vector Infusion
> Peripheral Vein
> Factor IX 1-6% expression
> 8 + years of follow up
> No late toxic effects
> Stable Expression

Nathwani AC et al. N Engl J Med 2014;371;1994-2004

Padua FIX B Gene Therapy

HematologyEducationOnline

Slide 69

Challenges with Gene Therapy Trials

HOPE- B (Phase III – AMT-061)

Uncontaminated central laboratory data (the visit did not occur within 10 days of exogeneous FIX use). FIX levels beginning with the Week 3 assessment were used in the analysis. Subjects with 0 uncontaminated centrallaboratory post-AMT-061 values had change from baseline assigned to zero for this analysis and had their post-baseline values set equal to their baseline value. Baseline FIX was imputed based on subject's historical haemophilia B severity documented on the case record form. If the patient had documented severe FIX deficiency (FIX plasma level <1%), their baseline FIX activity level is imputed as 1%. If the subject had documented moderately severe FIX deficiency (FIX plasma level \geq 1% and \leq 2%), their baseline FIX activity level was imputed as 2%.

Mean (SD; min, max) FIX activity was 39.0 IU/dL (±18.7; 8.2, 97.1) at 6 months and 36.9 IU/dL (±21.4; 4.5, 122.9) at 18 months

At 6 months, mean (SD) change from baseline was 37.77 (18.78) with a p-value < 0.0001; at 18 months the change from baseline was 35.72 (21.46) with a p-value < 0.0001. aPTT, activated partial thromboplastin time; FIX, factor IX; M, month; SD, standard deviation; W, Week.

M18

Dose: 2 x 10 ^13 No planned immunosuppressio

- Follow up:

- > 6 month : FIX Activity:: 39 %
- > 18 month: FXI Activity: 36.9 %

- > N=1 with HCC
- History of HCV
- > No clear integration event as causality
- Increased liver US screening
 - October 3, 2024 iesbach et al. EHAD 2022 Schmidt et al. ISTH 2021 Sponsor: Uniqure/CSL

HematologyEducationOnline Slide 72

HOPE- B (Phase III – AMT-061)

Coppens, Lancet 2024 Sponsor: Uniqure/CSL

HematologyEducationOnline

Slide 73

Hemophilia A Gene Therapy – Durability

The NEW ENGLAND JOURNAL of MEDICINE

HematologyEducationOnline

Slide 75

Octobera 3 K 2,024 I. NEJM 2020 Sponsor: Biomarin
Hemophilia A Gene Therapy – Durability

- GENEr8-1: phase 3 GT for HA with 4 years follow-up
 - AAV5-hFVIII-SQ (valoctocogene roxaparvovec) 6x10¹³ vg/kg

Median FVIII activity over time

In year 4, >70% of participants had no treated bleeds

112

Leavitt AD (ISTH 2024)

Sponsor: Biomarin

October 3, 2024

*2 participants did not reach year 4 follow-up, Week 208 data are based on 130 participants. For participants who discontinued the study, missing FVIII values post-discontinuation were imputed as 0 IU/dL through the data cutoff date.

CSA, chromogenic substrate assay; FVIII, factor VIII; GT, gene therapy; HA, haemophilia A; LLOQ, lower limit of quantification; mITT, modified intention-to-treat.

HematologyEducationOnline

Slide 77

Active Gene Therapy Trials:

Pipe SW, et al. Curr Gene Ther. (2023); PMID: 36111754

Active Gene Therapy Trials:

Table 1. Recent hemophilia B gene therapy trial using AAV

Sponsor	Transgene	No. of CpG motifs in transgene	Serotype	Genome format	Method of vector delivery	Dose range (vg/kg)	Mean stable FIX activity levels	No. of patients with transaminitis	Current status
Avigen/CHOP	Wild-type <i>FIX</i>	19	AAV2	ssAAV	IM	2e11 to 1.8e12	Transient at a maxi- mum level of 1.6%	0	Closed
Avigen/CHOP Coagulin-B	Wild-type <i>FIX</i>	19	AAV2	ssAAV	Intrahepatic artery	2e11 to 2e12	Transient with a maximum of 12%	1/2 at highest dose	Closed
St Jude/UCL	Codon-optimized FIX	0	AAV8	scAAV	Systemic	2e11 to 2e12	5.1%	4/6 patient at highest dose	Closed
Takeda (Baxalta; BAX 335)	Codon-optimized <i>FIX</i> + Padua mutation	99	AAV8	scAAV	Systemic	2e11 to 3e12	Transient except in 1 patient who had expression of ~20% at last report	2/6 patients treated at or above 1e12 received steroids in response to ALT elevations and 1 patient received prophylactic steroids.	Closed
Spark Therapeutics (SPK-9001, fidanacogene elaparvovec)	Codon-optimized <i>FIX</i> containing the Padua mutation	0	AAV- Spark100	SSAAV	Systemic	5e11	19.8% at 5 years	3/15 patients	Transitioned to phase 3 with Pfizer
uniQure (AMT-060)	Codon-optimized FIX	0	AAV5	ssAAV	Systemic	5e12-2e13	6.9% 5.2% at 5e12-vg/kg dose and 7.2% at 2e13-vg/kg dose at 5 years	2/5 at highest dose	A new program, AMT-061, that contains the FIX Padua in development with CSL Behring
CSL Behring (AMT-061, etranacogene dezaparvovec)	Codon-optimized <i>FIX</i> containing the Padua mutation	?0	AAV5	?ssAAV	Systemic	2e13	36.9%	9/54	Under regulatory review
Dimension Therapeutics (DTX101)	Codon-optimized FIX	96	AAVrh10	ssAAV	Systemic	1.6e12-5e12	6.7%	3/3 at highest dose	Closed
Freeline Therapeutics (FLT-180a, verbrinacogene setparvovec)	Codon-optimized <i>FIX</i> containing the Padua mutation	5	AAV-S3 synthetic capsid	ssAAV	Systemic	3.84e11-1.28e12	30%-279%	8/10	Clinical trials ongoing
Belief BioMed (BBM-H901)	Codon-optimized <i>FIX</i> containing the Padua mutation	0	AAV843 synthetic capsid	scAAV	Systemic	5e12	36.9%	2/10	Clinical trials ongoing
Sangamo Bioscience (SB-FIX)	Codon-optimized FIX	Not known	AAV6/zinc finger-mediated targeted integration into the albumin locus in hepatocytes	ssAAV	Systemic		Unknown	Unknown	Closed

IM, intramuscular; scAAV, self-complementary AAV; ssAAV, single stranded AAV.

Pipe SW, et al. Curr Gene Ther. (2023); PMID: 36111754

HematologyEducationOnline

Slide 81

October 3, 2024

