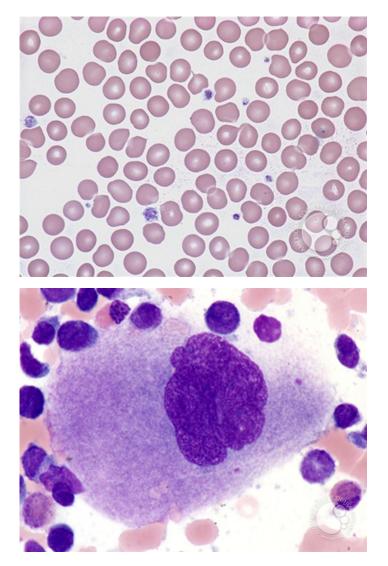
Platelet Function and Pathophysiology

November 2020

Eun-Ju Lee, MD Assistant Professor of Hematology NYP- Weill Cornell

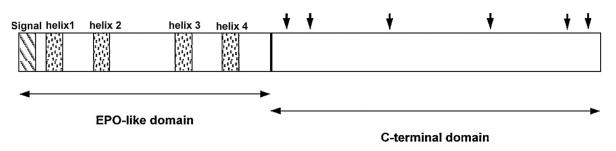
Disclosures


• none

Objectives

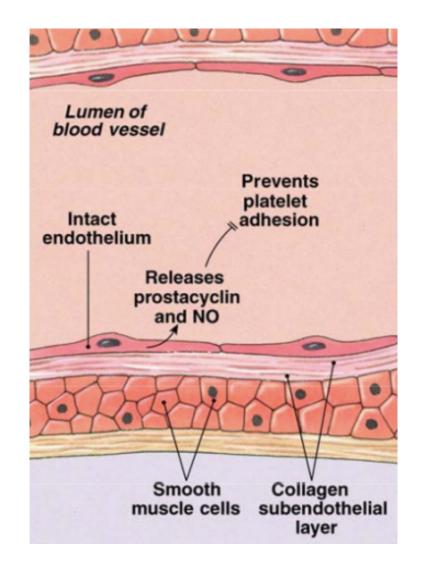
- Platelet basics
- Primary hemostasis
 - Adhesion
 - Activation/secretion
 - Aggregation
 - Review key agonists/mediators
- Antiplatelet medications
- Lab testing for platelet dysfunction
 - PFA 100
 - Light transmission aggregometry
- Inherited Platelet function disorders
- Acquired Platelet function disorders

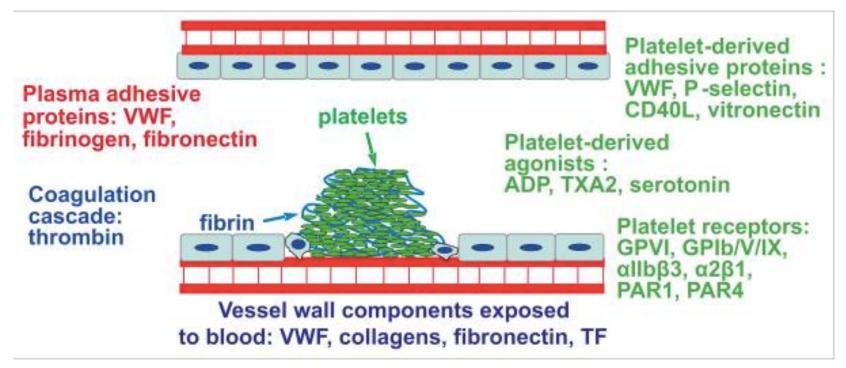
Platelets


- Anuclear, subcellular fragments derived from megakaryocytes
- Regulate hemostasis and vascular integrity
- Lifespan: 7-10 days

Maslak P, American Society of Hematology 2019

Platelets – Thrombopoietin (TPO)


- **TPO:** cytokine, major regulator of plt production
- TPO receptor (c-mpl) on a variety of hematopoietic tissues
 - stem cells, mega CFC, myeloid/erythroid precursors, megas, plts
- Made by liver (steady state), cleared by TPO-R's on plts
- TPO regulated by platelet biomass
 - Low plts -> ☆ TPO exposure to undifferentiated bone marrow cells -> differentiation of megas -> ☆ plt production

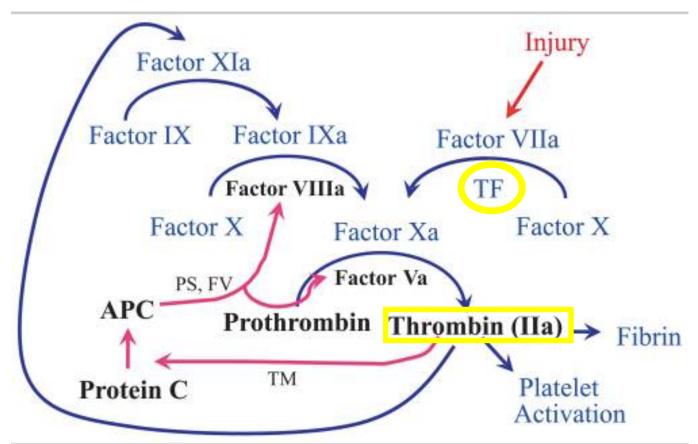

Kuter DJ, Begley CG Blood 2002

Platelets in Circulation

- Do not interact with intact endothelium
- Nitric oxide (NO), prostacyclin (PGI₂)
 - Endothelium-derived
 - Reduce plt reactivity
 - Prevent inappropriate plt activation

Primary Hemostasis

Platelet Adhesion: GPIb to immobilized vWF, GPVI to collagen


Platelet Activation/Secretion: plt shape change, activate integrin αIIbβ3 (GPIIb/ IIIa); secrete ADP, serotonin, form TXA2

<u>Platelet Aggregation</u>: GPIIb/IIIa binding fibrinogen, vWF

<u>Coagulation</u>: help activate coag cascade (thrombin), plt plug stabilized by fibrin

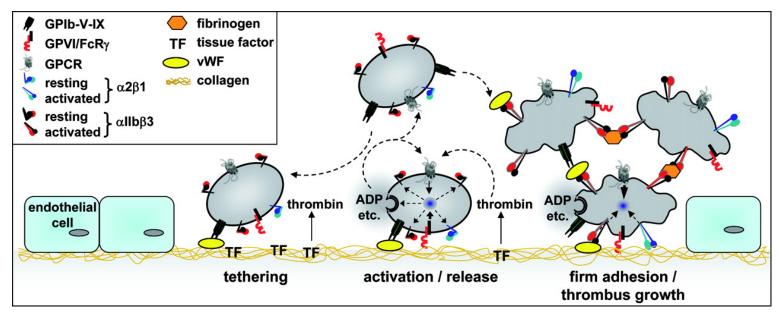
Gale AJ, Toxicol Pathol 2011

Secondary Hemostasis

Coagulation cascade: Injury exposes TF, leads to thrombin formation

Thrombin -> fibrin generation, plt activation (via PAR), positive feedback activation of intrinsic pathway, negative feedback activation of APC

Primary Hemostasis -Platelet Response

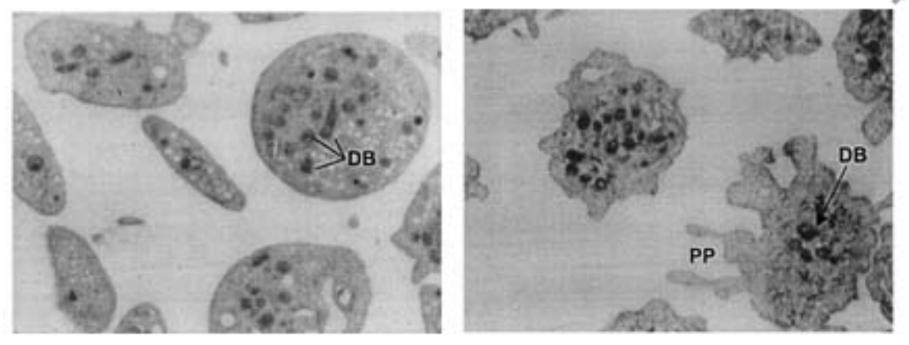

- <u>Adhesion</u>- platelets adhere to exposed ECM — Key players: GP1b-V-IX, vWF, GPVI, collagen
- <u>Activation/Secretion</u>- plt shape change, recruit more platelets, support coagulation cascade
 – Key players: ADP, ATP, Ca⁺², serotonin, TXA2, thrombin
- <u>Aggregation</u> form plt plug
 - Key players: integrin αIIbβ3 (GPIIb/IIIa), fibrinogen, vWF

Platelet Adhesion: Von Willebrand Factor

- Large, multimeric glycoprotein
 - Stored in Weibel-Palade bodies in endothelial cells, α-granules in megas/plts
 - Size correlates with ability to induce plt thrombi
- Roles in Thrombus formation:
 - Latches to exposed subendothelium (ie collagen)
 - Mediate plt adhesion to ECM via GP1b-V-IX
 - Role in aggregation via binding of GPIIb/IIIa
 - Carries **FVIII**, prevent clearance

Platelet Adhesion

- **GP1b-V-IX** (on plt) binds **vWF** immobilized on **collagen**
 - Initial capture, but rapidly reversible
- **GP-VI** (transmembrane receptor, plt specific) binds **collagen**
 - Firm, stable adhesion; mediates plt activation/secretion
- **GPIa/IIa** (integrin $\alpha 2\beta 1$ on plt) binds **collagen**



Varga-Szabo D, Arterioscler Thromb Vasc Biol 2008

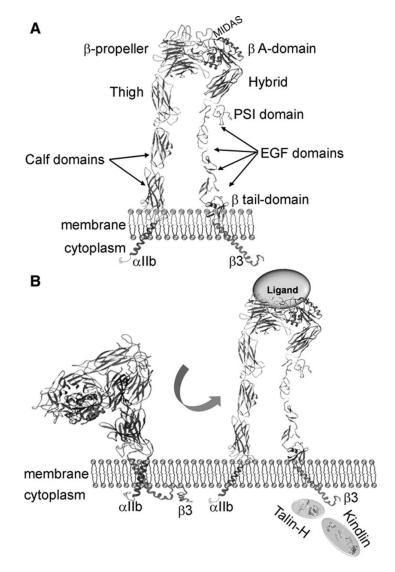
Primary Hemostasis -Platelet Response

- <u>Adhesion</u>- platelets adhere to exposed ECM
 Key players: GP1b-V-IX, vWF, GPVI, collagen
- <u>Activation/Secretion</u>- plt shape change, recruit more platelets, support coagulation cascade
 – Key players: ADP, ATP, Ca⁺², serotonin, TXA2, thrombin
- <u>Aggregation</u> form plt plug
 - Key players: integrin αIIbβ3 (GPIIb/IIIa), fibrinogen, vWF

Platelet Activation – Shape change

Resting platelet

Activated platelet: form pseudopodia, ☆ surface area, centralize granules, expose phospholipids for coag cascade


Platelet Activation

- Activation via adhesion and agonists leads to:
 - Change in plt shape
 - Plt integrins to high-affinity state (GPIIb/IIIa)
 - Granule secretion (ie ADP, Serotonin)
 - Synthesis of thromboxane A2 (TXA2)
- Amplify platelet activation, recruit additional platelets, generate thrombin

Platelet Activation - αIIbβ3 (GPIIb/IIIa)

Integrin αIIbβ3 (GPIIb/IIIa)

- Integrin: heterodimeric transmembrane proteins
- Most abundant receptor on plt (40,000-80,000/plt)
- Low affinity at rest
- Activation by 'inside out' (plt agonists, GPCRs, cytosolic Ca²⁺) & 'outside in' (ligand binding) signaling'
- Binds fibrinogen, vWF, thrombospondin, etc

Platelet Secretion


Tightly regulated

- − Signaling pathways lead to

 ¹ cytosolic Ca⁺²
- Granules fuse with plasma membrane & release contents
- Alpha (α) granules
 - Primary hemostasis, coagulation, wound repair, inflammation, angiogenesis

Dense (δ) bodies

 Primary hemostasis via feedback (esp ADP)

Platelet Secretion-granules

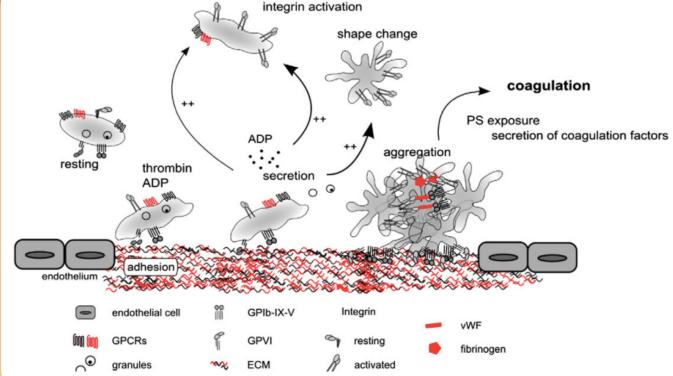
Secretory granule	Representative contents	Functions	Defects/disorders
<mark>Alpha (α)</mark> 50-80/plt	 vWF, fibrinogen, FV, XI, XIII, prothrombin TFPI, PS, plasmin P-selectin, PF-4 (CXCL4), CXCL7 VEGF, PDGF 	 Coagulation Hemostatic balance Inflammation Angiogenesis 	Gray Platelet Syndrome Quebec platelet disorder
<mark>Dense (δ)</mark> 3-5/plt	ADP , ATP, GDP, Serotonin, Calcium	Platelet activation	Hermansky-Pudlak Chediak-Higashi
Lysosome Few/plt	Acid hydrolases	Clot remodeling Digestion, Phagocytosis	

Primary Hemostasis -Platelet Response

- <u>Adhesion</u>- platelets adhere to exposed ECM
 Key players: GP1b-V-IX, vWF, GPVI, collagen
- <u>Activation/Secretion</u>- plt shape change, recruit more platelets, support coagulation cascade
 – Key players: ADP, ATP, Ca⁺², serotonin, TXA2, thrombin
- <u>Aggregation</u> form plt plug
 - Key players: integrin αIIbβ3 (GPIIb/IIIa), fibrinogen, vWF

Aggregation -Platelet plug formation

Activated plts bind **fibrinogen** via **GPIIb/IIIa** -> plts linked by fibrinogen bridges


Endothelial injury

<u>Plt adhesion</u>: GP1bvWF, GPVI-collagen

<u>Plt activation</u>: shape change, secrete agonists, form TXA2, GPIIb/IIIa activation

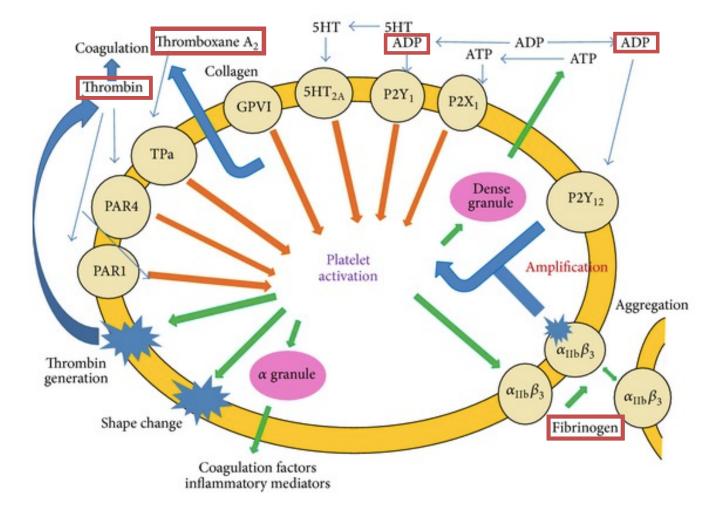
<u>GPIIb/IIIa</u>binds fibrinogen

<u>**Plt plug**</u>stabilized by fibrin

Key Agonists, Mediators

Thromboxane A2 (TXA2)

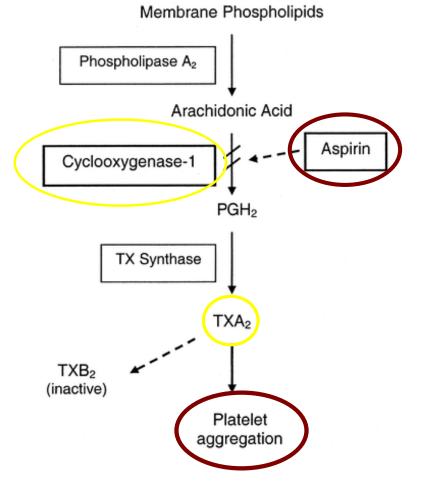
- Major product of AA metabolism
- Made & released from plts
- Amplifies plt activation, vasoconstriction
- ASA: inhibits mainly COX1 (convert AA -> prostaglandin H2 leading to TXA2 production)


ADP

- Released by plt dense bodies
- Bind plt **P2Y12** & P2Y1 receptors
- Sustain/amplify plt aggregation
- Thienopyridines (ie plavix) inhibit P2Y12

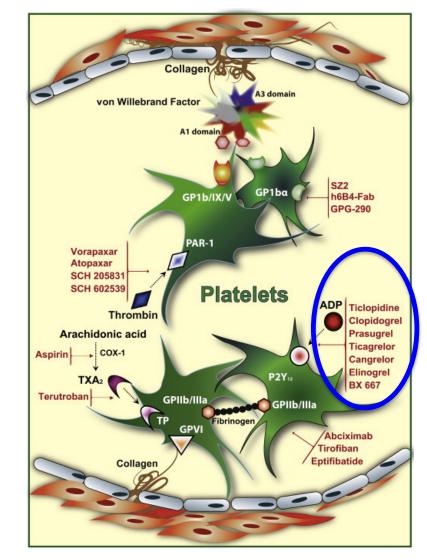
Thrombin (Factor IIa)

- Formed via coag cascade (extrinsic pathway) & on plt surface
- Binds PAR-1, PAR-4 on plts = activation of GPIIb/IIIa, plt agg
- Fibrinogen -> fibrin
- Positive feedback activation of intrinsic pathway


Key Agonists, Mediators

Platelet Pathology

- Cannot distinguish between traumatic and pathological vessel damage
 - May block diseased vessels = infarct, ischemia
 - Restenosis after angioplasty
 - Antiplatelet agents for coronary and cerebral artery disease


Antiplatelet Medications - ASA

- <u>Target</u>: Mainly COX-1, some COX-2 (dose dependent), irreversible inhibition
- Effect: ♥ Prostaglandin H2 synthesis, ♥ TXA2 = inhibited plt aggregation, blunted proinflammatory responses
- <u>Duration</u>: Lifetime of plt (8-10 days). About 10% of plts replaced daily (ie COX recovers 10%/day post-ASA)

Antiplatelet Medications – Clopidogrel

- <u>Target</u>: P2Y12 receptor, selective and irreversible inhibition
- <u>Effect</u>: Blocks ADP binding to P2Y12, suppress amplified plt response to other agonist, impair plt aggregation
- <u>Duration</u>: lifetime of plt (but recovery of plt function ~5 days)

Antiplatelet Medications

Target	How it works	Medication Name	
COX1	TXA2 involved in plt activation	ASA	
	Irreversible inhibition COX1 Decrease TXA2 production		
P2Y12 (plt receptor ADP)	Blocks ADP mediated amplification of plt activation/aggregation	Thienopyridines: Ticlopidine (Ticlid [®]),	
	Irreversible blockade Prodrug (active metabolite via liver)	Clopidogrel (Plavix [®]), Prasugrel (Effient [®])	
P2Y12	Direct, reversible antagonists	Ticagrelor (Brillinta®) Cangrelor (Kengreal®)	
GPIIb/IIIa	Inhibit GPIIb/IIIa, blocks fibrinogen mediated plt aggregation	Tirofiban (Aggrastat®): Eptifibatide (Integrillin®) Abciximab (ReoPro®)	
PAR1	Inhibits thrombin mediated platelet activation/aggregation	Vorapaxar (Zontivity®)	

Platelet Function Disorders (PFD)

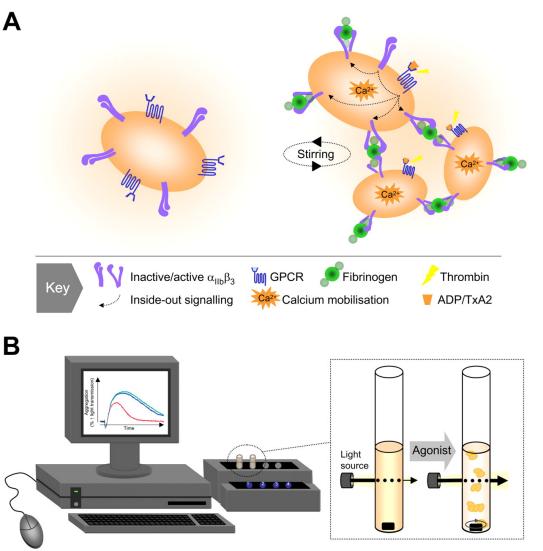
- Acquired (ie medicines, medical illness) or inherited
- Mucocutaneous bleeding (skin, mucous membranes)
 - Petechiae: < 3mm</p>
 - Purpura: 3-10mm
 - Ecchymoses: > 1cm

Petechiae on soft palate

PFD – Diagnostic evaluation

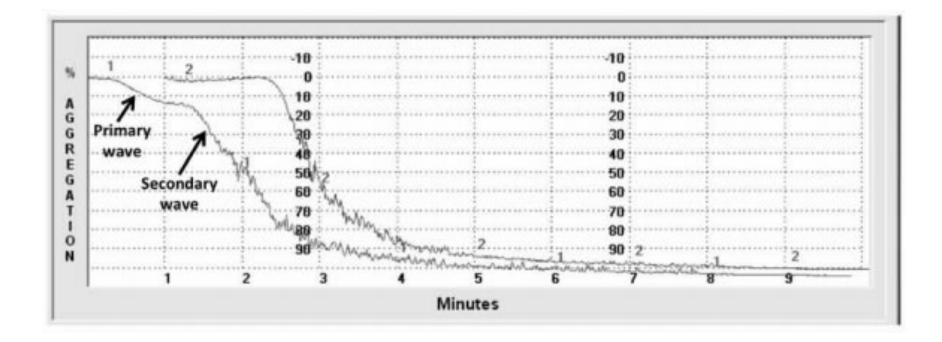
• Bleeding History

- Spontaneous, mucocutaneous, hemostatic challenges
- Family history of bleeding
- Medications, comorbidities
- Clinical Exam
- Laboratory Testing
 - CBC with diff, coags + fibrinogen, vWF studies
 - **PFA-100** (helpful for severe plt defects ie BSS, GT, plt type vWD, poor sensitivity/specificity for less severe)
 - Light transmission aggregometry (LTA)
 - Specialized studies: flow cytometry, EM, genetic testing


Platelet Aggregometry - LTA

Light Transmission Aggregometry:

-Plt rich plasma in cuvette between light + photocell


- Stir plts in presence of agonist (ie ADP, AA, coll, epi, ristocetin)

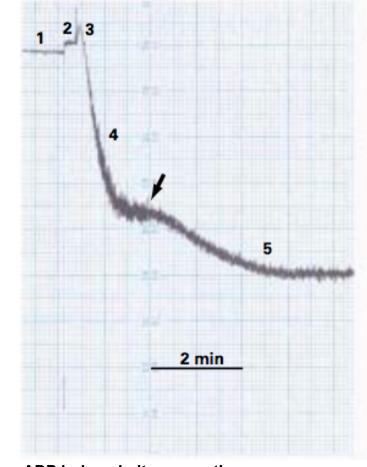
- Plts aggregate = ①light transmission, recorded as function of time

Jackson SP, Blood 2007

Platelet Aggregometry – LTA normal

Primary wave: response to addition of exogenous agonist

Secondary wave: aggregation in response to plt activation and secretion of endogenous pool of agonists


Cuker A, Ask the Hematologist, 2014

Platelet Aggregometry – LTA normal

Light Transmissior

- 1) Baseline pre agonist
- 2) Plt agonist added
- Plt shape change =slight ♥ in light transmission
- 4) Primary aggregation
- 5) Secondary aggregation (TXA formation, granule secretion)

Very strong agonists -> may not see differentiation between primary and secondary waves

ADP induced plt aggregation

Zhou L, Am J Clin Pathol 2005

Platelet Aggregometry - Agonists

Platelet Agonist	Target/Receptor		
ADP	P2Y1, P2Y12 Low dose -> primary aggregation High dose -> secondary aggregation		
Collagen	GPVI, GPIa/IIa		
Ristocetin	vWF, GP Ib/IX/V complex		
Epinephrine	Adrenergic receptors (leads to release of Ca ⁺²)		
Arachidonic Acid	Plt agg mediated via TXA2 synthesis (AA precursor of TXA2, involves COX1, COX2, prostaglandin H2)		

Platelet Aggregometry - LTA Abnormal

Characteristic LTA Patterns of Selected PFD's

Disorder	Primary wave ADP	Secondary wave ADP	Epinephrine	AA	Collagen	Ristocetin
GT	Absent	Absent	Absent	Absent	Absent	Normal
BSS	Normal	Normal	Normal	Normal	Normal	Absent
Dense (δ) granule SPD	Normal	Decreased or Absent	Variable	Normal	Normal	Normal
ASA use	Normal	Decreased or Absent	Decreased or Absent	Absent	Decreased or Absent	Normal
P2Y12 inhibitor	Decreased or Absent	Absent	Normal	Normal	Normal	Normal
GPIIb/IIIa inhibitor	Absent	Absent	Absent	Absent	Absent	Normal

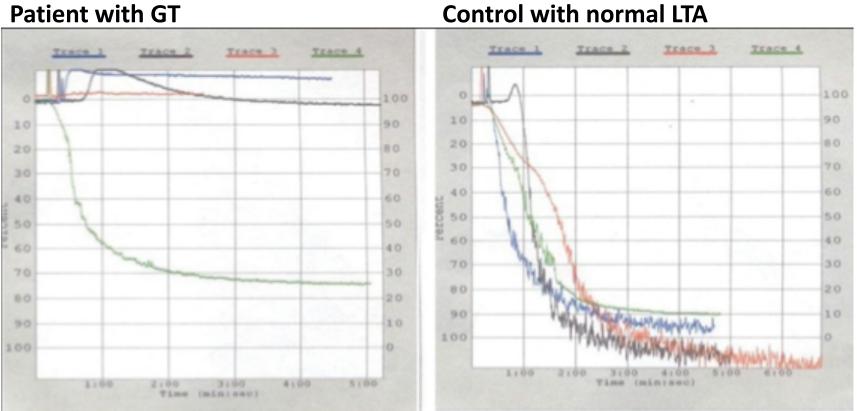
GT: Glanzmann thrombasthenia; BSS: Bernard Soulier Syndrome; SPD: storage pool disorder

Glanzmann Thrombasthenia

- **Genetics**: Autosomal recessive Mutations *ITGA2B*, *ITGB3*
- Incidence: ~1/million; up to 1/200K in high consanguinity
- Molecular: Absent/non-functioning GPIIb/IIIa
 Plts stick to collagen but no plt cross-linking
- Clinical: Mod to severe mucocutaneous bleeding
 - Incidence of severe bleeding decreases with age, no correlation b/w GPIIb/IIIa levels and bleeding severity

Glanzmann Thrombasthenia

• Diagnosis:


- Normal plt count
- LTA absent response to all agonists except ristocetin
- Flow: low or absent GPIIb/IIIa

• Treatment:

 – anti-fibrinolytics, ?DDAVP, recombinant FVIIa, plt transfusion- HLA matched (risk of alloimmunization)

Glanzmann Thrombasthenia

Patient with GT

LTA in Glanzmann Thrombasthenia: Normal aggregation with Ristocetin (green), decreased with other agonists

Ristocetin: causes vWF to bind to plt GP1b, plt agg/agglutination

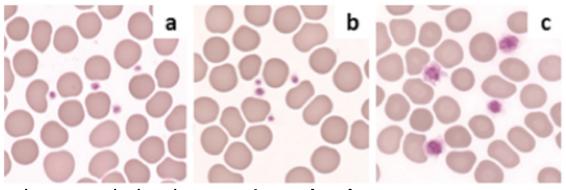
Belurkar S, Ann Nigerian Med 2012

Bernard Soulier Syndrome

- Genetics: Autosomal recessive
 - GP1b-V-IX complex composed of 4 subunits
 - Mutations in *GP1bα*, *GP1b*β, *GP9*
- **Incidence**: < 1 per million
- Molecular: Dysfunctional GP1b-V-IX

Adhesion defect (plt binding to vWF on ECM)

• Clinical: Variable mucocutaneous bleeding


Bernard Soulier Syndrome

• Diagnosis:

- Macrothrombocytopenia
- LTA: no ristocetin response, normal to other agonists
- Flow cytometry: decreased surface expression of GP1b

• Treatment:

anti-fibrinolytics, plt transfusion-HLA matched

a,b: normal platelets; c: giant platelets

Balduini CL, Semin Thromb Hemost 2013

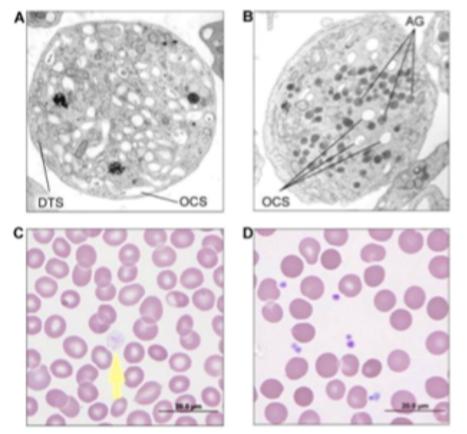
Platelet-type von Willebrand disease

Genetics: Autosomal dominant

– Gain of function mutation of GPIb-V-IX (GP1b α)

- Molecular:
 - Spontaneous binding of vWF to plts and increased clearance of vWF-platelet complexes
- **Clinical:** Mild-mod mucocutaneous bleeding, mild macrothrombocytopenia

Platelet-type von Willebrand disease


- Must distinguish from Type 2B vWD
- Platelet type vWD: treat with platelet replacement, **NOT** responsive to vWF replacement
- Diagnosis: ↓vWF activity, ↓ HMW vWF multimers, specialized RIPA mixing studies, genetic testing (GP1bα, vWF)

Gray platelet syndrome

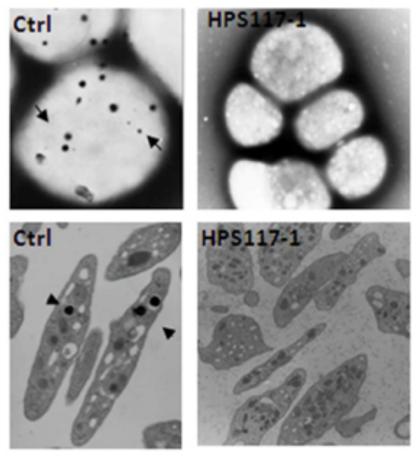
- Genetics: Autosomal recessive
 - mutation in NBEAL2
- Clinical:
 - Mild to moderate bleeding
 - Associated w/myelofibrosis splenomegaly

• Diagnosis:

- Large platelets
- Lack α granules
- Gray appearance of plts by light microscopy

A: Plts lack α granules, B: normal α granules C: Pale gray plts, D: normal smear

Meral Gunay-Aygun et al. Blood 2010;116:4990-5001


Hermansky-Pudlak Syndrome

- Genetics: Autosomal recessive
 - Mutations in *HPS1* most common
 - Most common in northwestern Puerto Rico (1:1800)
- Clinical: Mod-severe bleeding, Oculocutaneous albinism
 - Granulomatous colitis, pulmonary fibrosis, immunodeficiency associated with some subtypes
 - Plt defect (lack δ granules) part of a larger syndrome

Pt with HPS with mother

Hermansky-Pudlak Syndrome

EM showing absence of plt δ granules

Diagnosis:

- Normal plt count
- LTA: absent second wave of aggregation
- Electron microscopy:
 absent/few dense (δ)
 granules

Chediak-Higashi Syndrome

- **Genetics**: Autosomal recessive mutation in *CHS/LYST* gene
- Clinical: Mod-severe bleeding, oculocutaneous albinism, severe immunodeficiency, neurological dysfunction
 - Plt defect (absent δ granules) part of a larger syndromic disease

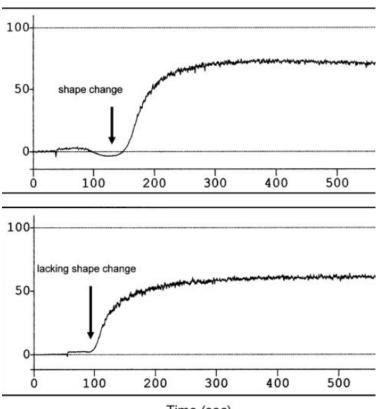
Chediak-Higashi Syndrome

Diagnosis:

- Smear: giant inclusions in leukocytes
- EM absent dense granules

Peripheral smear (Wright Giemsa stain): giant intracytoplasmic granules in leukocytes

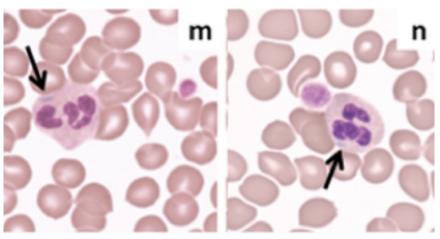
MYH-9 Related Disorders


Previously known as May-Hegglin anomaly, Sebastian, Fechtner, or Epstein syndrome

- Genetics: Autosomal dominant
 - Mutations in MYH9 (nonmuscle myosin IIA heavy chain); involved in cell motility/shape maintenance

• Molecular:

- Dysfunctional MYH9 -> defective megakaryocyte maturation, abnormal cytoplasmic transport
- **Clinical**: Mild-mod bleeding, plts 30-100K, macrothrombocytopenia, nephritis, hearing loss


MYH-9 Related Disorders

Time (sec)

Top: normal aggregation **Bottom**: MYH-9, slightly impaired response to collagen, no shape change Diagnosis:

- large Döhle-like bodies in leukocytes, giant plts
- LTA: impaired collagen response, no shape change
- Immunoflourescence (NMM-IIA inclusion bodies)

Balduini CL, Semin Thromb Hemost 2013

Althaus K, Semin Thromb Hemost, 2009

Wiskott-Aldrich Syndrome

- Genetics: X linked recessive
 - Mutation in WAS gene
 - WASp: hematopoietic-specific regulator of actin polymerization
- Clinical: microthrombocytopenia, eczema, recurrent infections due to severe immune deficiency, increased risk of lymphoid malignancy
- **Diagnosis**: low IgG/IgA/IgM, flow for WASp expression, gene sequencing

Inherited Platelet Function Disorders

Disorder	Genetic Alteration	LTA response	Clinical features	
Disorders of plt aggregation				
Glanzmann Thrombasthenia	<i>ITGA2B, ITGB3</i> (GPIIb/IIIa defects)	Absent to all but ristocetin	Mod-severe bleeding	
Disorders of plt adhesion				
Bernard Soulier Syndrome	<i>GP1Bα, GP1Bβ, GP9</i> (GPIb/IX/V defects)	Absent response to ristocetin	Large plts, mild thrombocytopenia	
Platelet type vWD	GOF mutation in <i>GP1BA</i> (GP1bα)	Increased agglutination to low dose ristocetin	Large plts, decreased HMW vWF multimers	
α Granule disorders				
Gray plt syndrome	<i>NBEAL2</i> (lack α granules)	Decreased response thrombin, collagen	Large plts, myelofibrosis	
Quebec plt disorder	Duplication of <i>PLAU</i> Excess uPA = α granule proteolysis	Decreased response thrombin, collagen	Delayed onset bleeding, responds to anti-fibrinolytics	

Inherited Platelet Function Disorders

Disorder	Genetic Alteration	LTA response	Clinical features	
Dense (δ) Granule defects/secretion defects				
Hermansky-Pudlak Syndrome	HPS1 – HPS 8 (absent δ granules)	+/- Decreased response to ADP, coll, epi. Absent secondary aggregation	Oculocutaneous albinism, strabismus, pulmonary fibrosis	
Chediak-Higashi Syndrome	<i>LYST</i> (absent δ granules)	+/- Decreased response to ADP, coll, epi. Absent secondary aggregation	Partial albinism, immunodeficiency, neurologic dysfunct Inclusion bodies in granulocytes	
Cytoskeletal defects				
Wiskott-Aldrich Syndrome	WAS (WASp needed to maintain integrity of actin cytoskeleton)		X-linked recessive. Eczema, low + small plts, immune deficiency	

Acquired Platelet Function Disorders

- Medications
- Acquired von Willebrand Syndrome (AVWS)
 Clonal hematopoietic disorders, AS, autoimmune
- Systemic Disorders
 - Renal disease/uremeia, paraproteinemias, bypass

Acquired Platelet Function Disorders

Medications

- Antiplatelet medications, NSAIDs
- β-Lactam antibiotics
 (penicillins,
 cephalosporins)
- In vitro effects: statins, SSRIs, herbals

Acquired von Willebrand Syndrome (AVWS)

- Clonal hematological disorders (MPN, ET): adsorption of vWF to plts
- Autoimmune: Ab mediated
 vWF clearance
- Shear stress/proteolysis (ie Aortic Stenosis, LVAD)

Acquired Platelet Function Disorders Systemic Disorders

• ESRD/Uremia

- substances (ie NO) inhibit plt adhesion, activation, aggregation
- Anemia attenuates plt/vessel wall interactions
- Accumulation of medications

• Plasma cell dyscrasias

- Paraproteins stick to platelets, impair plt-plt interactions
- Paraproteins can cause AVWS

Cardiopulmonary bypass

- Plts activated and degranulate in circuit
- Hypothermia compromises plt function

Thank You!

References

- Golebiewska EM, Poole AW. Platelet secretion: From haemostasis to wound healing and beyond. Blood Reviews 2015; 29:153-162.
- Kruse-Jarres R, Johnsen JM. How I treat type 2B von Willebrand Disease. Blood 2018; 131 (12): 1292-1300.
- Gunay-Aygun M et al. Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood 2010; 116(23): 4990-5001.
- Sharma R, et al. Congenital Disorders of platelet function and number. Pediatr Clin N Am 2018; 65:561-578.
- Golebiewska EM, Poole AW. Platelet secretion: From haemostasis to wound healing and beyond. Blood Reviews 2015; 29: 153-162.
- Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor? Blood 2003; 102:449-461.
- De Meyer SF, Vanhoorelbeke K, et al. Antiplatelet drugs. Br J Hematol 2008; 142 (4): 515-528.
- Moliterno DJ, Advances in antiplatelet therapy for ACS and PCI. J Interv Cardiol 2008; 21 Suppl 1:S18-24.
- Gachet C. Antiplatelet drugs: which targets for which treatments? J Thromb Haemost 2015; 13 Suppl 1: S313-22
- Yousuf O, Bhatt DL. The evolution of anti platelet therapy in cardiovascular disease. Nat Rev Cardiol 2011; 8 (10): 547-59.
- Kuter DJ. The biology of thrombopoietin and thrombopoietin receptor agonists. Int J Hematol 2013; 98(1):10-23.
- Golebiewska EM, Poole AW. Secrets of platelet exocytosis what do we really know about platelet secretion mechanisms? Br J Haematol 2014; 165(2): 204-216.
- Gale AJ. Current Understanding of Hemostasis. Toxicol Pathol 2011; 39(1):273-280.
- Radomski MW et al. The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmac 1987; 92:639-646.
- Jurk K, Kehrel BE. Platelets: Physiology and Biochemistry. Semin Thromb Hemost 2005; 31(4): 381-392.
- Ruggeri ZM. Von Willebrand factor, platelets and endothelial cell interactions. J Thromb Haemost 2003; 1(7): 1335-42.
- Varga-Szabo D, et al. Cell Adhesion Mechanisms in Platelets. Arterioscler Thromb Vasc Biol 2008; 28(3): 403-12.
- Sorrentino S, et al. Toward correlating structure and mechanics of platelets. Cell Adh Migr 2016; 10(5): 568-575.
- Bledzka K, et al. Integrin αIIbβ3: from discovery to efficacious therapeutic target. Circ Res 2013; 112(8): 1189-200.

References

- Heijnen H, van der Sluijs P. Platelet secretory behaviour: as diverse as the granules...or not? J Thromb Haemost 2015; 13(12):2141-51.
- Jackson SP. The growing complexity of platelet aggregation. Blood 2007: 109:5087-5095.
- Koltai K, et al. Platelet Aggregometry Testing: Molecular Mechanisms, Techniques and Clinical Implications. Int J Mol Sci 2017; 18(8):1803.
- Cuker A, Light Transmission Aggregometry, Ask the Hematologist 2014; 11(2).
- Zhou L, Schmaier AH. Platelet aggregation testing in platelet-rich plasma: description of procedures with the aim to develop standards in the field. Am J Clin Pathol 2005; 123(2):172-83.
- Rand ML, Reddy EC, et al. Laboratory diagnosis of inherited platelet function disorders. Transfus Apher Sci 2018; 57(4):485-493.
- Nurden AT. Qualitative disorders of platelets and megakaryocytes. J Thromb Haemost 2005; 3(8): 1773-82.
- Grainger JD, et al. How we treat the platelet glycoprotein defects; Glanzmann thrombasthenia and Bernard Soulier syndrome in children and adults.Br J Haematol 2018; 182(5):621-632.
- Diz-Küçükkaya, R. Inherited platelet disorders including Glanzmann thrombasthenia and Bernard-Soulier syndrome. Hematology Am Soc Hematol Educ Program; 2013:268-75
- Balduini CL et al. Diagnosis and Management of Inherited Thrombocytopenias. Semin Thromb Hemost 2013; 39(2):161-71
- Althaus K, Greinacher A. MYH9-Related Platelet Disorders. Semin Thromb Hemost 2009;35:189-203.
- Awtry EH, Loscalzo J. Aspirin. Circulation 2000;101:1206-1218.
- Hassan A, Acquired Disorders of Platelet Function. Hematology Am Soc Hematol Educ Program 2005 (1): 403-408.
- Tiede A, et al. How I treat the acquired von Willebrand syndrome. Blood 2011; 117(25): 6777-6785.